|
from typing import Dict, List, Any |
|
from transformers import pipeline |
|
import torch |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
self.pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=path, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
self.pipe.model.config.forced_decoder_ids = self.pipe.tokenizer.get_decoder_prompt_ids(language="turkish", task="transcribe") |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
inputs = data.pop("inputs",data) |
|
prediction = self.pipe(inputs, return_timestamps=False, generate_kwargs={"language": "turkish", "task": "transcribe"}) |
|
return prediction |
|
|