foxik nazneen commited on
Commit
e1eaff9
1 Parent(s): b154a97

model documentation (#2)

Browse files

- model documentation (923864124976874b83d79503644d11e863b2f2c5)


Co-authored-by: Nazneen Rajani <[email protected]>

Files changed (1) hide show
  1. README.md +174 -8
README.md CHANGED
@@ -1,19 +1,185 @@
 
1
  ---
2
- language: "cs"
 
3
  tags:
4
  - Czech
5
  - RoBERTa
6
  - ÚFAL
7
- license: "cc-by-nc-sa-4.0"
8
  ---
9
 
10
- # RobeCzech model
11
-
 
 
 
12
  RobeCzech is a monolingual RoBERTa language representation model trained on Czech data.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- RobeCzech model is released publicly at [LINDAT](https://hdl.handle.net/11234/1-3691) and [Hugging Face](https://huggingface.co/ufal/robeczech-base).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- Please cite the corresponding publication:
17
- - Milan Straka, Jakub Náplava, Jana Straková and David Samuel: Czech RoBERTa, a monolingual contextualized language representation model. Accepted to TSD 2021.
 
 
 
 
 
 
18
 
19
- Preprint of the paper is available at https://arxiv.org/abs/2105.11314.
 
1
+
2
  ---
3
+ language: cs
4
+ license: cc-by-nc-sa-4.0
5
  tags:
6
  - Czech
7
  - RoBERTa
8
  - ÚFAL
 
9
  ---
10
 
11
+ # Model Card for RobeCzech
12
+ # Model Details
13
+
14
+ ## Model Description
15
+
16
  RobeCzech is a monolingual RoBERTa language representation model trained on Czech data.
17
+
18
+ - **Developed by:** Institute of Formal and Applied Linguistics, Charles University, Prague (UFAL)
19
+ - **Shared by [Optional]:** Hugging Face and [LINDAT](https://hdl.handle.net/11234/1-3691)
20
+ - **Model type:** Fill-Mask
21
+ - **Language(s) (NLP):** cs
22
+ - **License:** cc-by-nc-sa-4.0
23
+ - **Related Models:** More information needed
24
+ - **Parent Model:** RoBERTa
25
+ - **Resources for more information:**
26
+ - [Associated Paper](https://arxiv.org/abs/2105.11314)
27
+
28
+ # Uses
29
+
30
+ ## Direct Use
31
+
32
+ Fill-Mask tasks.
33
+
34
+ ## Downstream Use [Optional]
35
+
36
+ Morphological tagging and lemmatization, dependency parsing, named entity recognition and semantic parsing.
37
+
38
+
39
+ ## Out-of-Scope Use
40
+
41
+
42
+ More information needed
43
+
44
+
45
+ # Bias, Risks, and Limitations
46
+
47
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
48
+
49
+
50
+ ## Recommendations
51
+
52
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
53
+
54
+
55
+ # Training Details
56
+
57
+ ## Training Data
58
+
59
+ The model creators note in the [associated paper](https://arxiv.org/pdf/2105.11314.pdf):
60
+ > We trained RobeCzech on a collection of the following publicly available texts:
61
+ - SYN v4, a large corpus of contemporary written Czech, 4,188M tokens;
62
+ - Czes, a collection of Czech newspaper and magazine articles, 432M tokens;
63
+ - documents with at least 400 tokens from the Czech part of the web corpus.W2C , tokenized with MorphoDiTa, 16M tokens;
64
+ - plain texts extracted from Czech Wikipedia dump 20201020 using WikiEx-tractor, tokenized with MorphoDiTa, 123M tokens
65
 
66
+ > All these corpora contain whole documents, even if the SYN v4 is block-shuffled (blocks with at most 100 words respecting sentence boundaries are permuted in a document) and in total contain 4,917M tokens.
67
+
68
+
69
+
70
+ ## Training Procedure
71
+
72
+ ### Preprocessing
73
+
74
+ The texts are tokenized into subwords with a byte-level BPE (BBPE) to- kenizer [33]. The tokenizer is trained on the entire corpus and we limit its vocabulary size to 52,000 items.
75
+
76
+ ### Speeds, Sizes, Times
77
+ The model creators note in the [associated paper](https://arxiv.org/pdf/2105.11314.pdf):
78
+ > The training batch size is 8,192 and each training batch consists of sentences sampled contiguously, even across document boundaries, such that the total length of each sample is at most 512 tokens (FULL-SENTENCES setting). We use Adam optimizer with β1 = 0.9 and β2 = 0.98 to minimize the masked language-modeling objective.
79
+
80
+
81
+
82
+ # Evaluation
83
+
84
+ ## Testing Data, Factors & Metrics
85
+
86
+ ### Testing Data
87
+ The model creators note in the [associated paper](https://arxiv.org/pdf/2105.11314.pdf):
88
+ > We evaluate RobeCzech in five NLP tasks, three of them leveraging frozen contextualized word embeddings, two approached with fine-tuning:
89
+ morphological analysis and lemmatization: frozen contextualized word embeddings,
90
+ dependency parsing: frozen contextualized word embeddings,
91
+ named entity recognition: frozen contextualized word embeddings,
92
+ semantic parsing: fine-tuned,
93
+ sentiment analysis: fine-tuned.
94
+
95
+
96
+
97
+ ### Factors
98
+
99
+ More information needed
100
+
101
+ ### Metrics
102
+
103
+ Morphosynt PDT3.5 (POS) | Morphosynt PDT3. (LAS) | Morphosynt UD2.3 (XPOS) | Morphosynt UD2.3 ( LAS) |
104
+ NER CNEC1.1 (nested) | NER CNEC1.1 (flat) | Semant. PTG (Avg) | Sentim. CDF (F1) |
105
+
106
+
107
+ ## Results
108
+
109
+ | Model | Morphosynt PDT3.5 (POS) (LAS) | Morphosynt UD2.3 (XPOS) (LAS) | NER CNEC1.1 (nested) (flat) | Semant. PTG (Avg) (F1) |
110
+ |-----------|---------------------------------|--------------------------------|------------------------------|-------------------------|
111
+ | RobeCzech | 98.50 91.42 | 98.31 93.77 | 87.82 87.47 | 92.36 80.13 |
112
+
113
+
114
+ # Model Examination
115
+
116
+ More information needed
117
+
118
+ # Environmental Impact
119
+
120
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
121
+
122
+ - **Hardware Type:** 8 QUADRO P5000 GPU
123
+ - **Hours used:** 2190 (~3 months)
124
+ - **Cloud Provider:** More information needed
125
+ - **Compute Region:** More information needed
126
+ - **Carbon Emitted:** More information needed
127
+
128
+ # Technical Specifications [optional]
129
+
130
+ ## Model Architecture and Objective
131
+ The model creators note in the [associated paper](https://arxiv.org/pdf/2105.11314.pdf):
132
+ We employ the standard text classification architecture consisting of a BERT encoder, followed by a softmax-activated classification layer processing the computed embedding of the given document text obtained from the CLS token embedding from the last layer
133
+
134
+
135
+ ## Compute Infrastructure
136
+
137
+ ### Hardware
138
+
139
+ 8 QUADRO P5000 GPU
140
+
141
+ ### Software
142
+
143
+ More information needed
144
+
145
+ # Citation
146
+
147
+ **APA:**
148
+
149
+ ```
150
+ Straka, M., Náplava, J., Straková, J., & Samuel, D. (2021). RobeCzech: Czech RoBERTa, a monolingual contextualized language representation model. arXiv. https://doi.org/10.1007/978-3-030-83527-9_17
151
+ ```
152
+
153
+
154
+ # Glossary [optional]
155
+
156
+ More information needed
157
+
158
+ # More Information [optional]
159
+
160
+ More information needed
161
+
162
+ # Model Card Authors [optional]
163
+
164
+ Institute of Formal and Applied Linguistics, Charles University, Prague (UFAL), in collaboration with Ezi Ozoani and the Hugging Face Team.
165
+
166
+ # Model Card Contact
167
+
168
+ More information needed
169
+
170
+ # How to Get Started with the Model
171
+
172
+ Use the code below to get started with the model.
173
+
174
+ <details>
175
+ <summary> Click to expand </summary>
176
 
177
+ ```python
178
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
179
+
180
+ tokenizer = AutoTokenizer.from_pretrained("ufal/robeczech-base")
181
+
182
+ model = AutoModelForMaskedLM.from_pretrained("ufal/robeczech-base")
183
+ ```
184
+ </details>
185