Update
Browse files- README.md +135 -55
- config.json +29 -0
- 69.pt → pytorch_model.bin +2 -2
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
- train_conformer_large_w2v.yaml +0 -119
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,77 +1,157 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
datasets:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Chinese W2v-conformer
|
6 |
## Model description
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
## How to use
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
```python
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
>>> encoder = ConformerEncoder(input_dim, **configs['encoder_conf'])
|
20 |
-
>>> decoder = TransformerDecoder(vocab_size, encoder.output_size(), **configs['decoder_conf'])
|
21 |
-
>>> ctc = CTC(vocab_size, encoder.output_size())
|
22 |
-
>>> with open(args.config, 'r') as fin: configs = yaml.load(fin)
|
23 |
-
>>> model = ASRModel(
|
24 |
-
vocab_size=vocab_size,
|
25 |
-
encoder=encoder,
|
26 |
-
decoder=decoder,
|
27 |
-
ctc=ctc,
|
28 |
-
**configs['model_conf'],
|
29 |
-
)
|
30 |
-
>>> infos = load_checkpoint(model, args.checkpoint)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
```
|
33 |
|
34 |
## Training data
|
35 |
-
|
|
|
|
|
36 |
## Training procedure
|
37 |
-
The model is pre-trained by wav2vec2 (https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 70 epochs with a batch size of 128. We use the same hyper-parameters on different model sizes.
|
38 |
-
The downstream models are finetuned:
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
```
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
${checkpoint:+--checkpoint $checkpoint} \
|
47 |
-
--model_dir $dir \
|
48 |
-
--ddp.init_method $init_method \
|
49 |
-
--ddp.world_size 7 \
|
50 |
-
--ddp.dist_backend nccl \
|
51 |
-
--num_workers 2
|
52 |
```
|
53 |
|
54 |
-
### BibTeX entry and citation info
|
55 |
```
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
}
|
69 |
|
70 |
-
@article{
|
71 |
-
title={
|
72 |
-
author={
|
73 |
-
journal={
|
74 |
-
|
|
|
75 |
}
|
76 |
```
|
77 |
[base]:https://huggingface.co/uer/albert-base-chinese-cluecorpussmall
|
|
|
1 |
---
|
2 |
+
language: Chinese
|
3 |
+
datasets: CLUECorpusSmall
|
4 |
+
widget:
|
5 |
+
- text: "中国的首都是[MASK]京"
|
6 |
+
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
|
11 |
+
# Chinese ALBERT
|
12 |
|
|
|
13 |
## Model description
|
14 |
+
|
15 |
+
This is the set of Chinese ALBERT models pre-trained by UER-py. You can download the model either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below:
|
16 |
+
|
17 |
+
| | Link |
|
18 |
+
| -------- | :-----------------------: |
|
19 |
+
| **ALBERT-Base** | [**L=12/H=768 (Base)**][base] |
|
20 |
+
| **ALBERT-Large** | [**L=24/H=1024 (Large)**][large] |
|
21 |
|
22 |
## How to use
|
23 |
+
|
24 |
+
You can use the model directly with a pipeline for text generation:
|
25 |
+
|
26 |
+
```python
|
27 |
+
>>> from transformers import BertTokenizer, AlbertForMaskedLM, FillMaskPipeline
|
28 |
+
>>> tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
29 |
+
>>> model = AlbertForMaskedLM.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
30 |
+
>>> unmasker = FillMaskPipeline(model, tokenizer)
|
31 |
+
>>> unmasker("中国的首都是[MASK]京。")
|
32 |
+
[
|
33 |
+
{'sequence': '中 国 的 首 都 是 北 京 。',
|
34 |
+
'score': 0.8528032898902893,
|
35 |
+
'token': 1266,
|
36 |
+
'token_str': '北'},
|
37 |
+
{'sequence': '中 国 的 首 都 是 南 京 。',
|
38 |
+
'score': 0.07667620480060577,
|
39 |
+
'token': 1298,
|
40 |
+
'token_str': '南'},
|
41 |
+
{'sequence': '中 国 的 首 都 是 东 京 。',
|
42 |
+
'score': 0.020440367981791496,
|
43 |
+
'token': 691,
|
44 |
+
'token_str': '东'},
|
45 |
+
{'sequence': '中 国 的 首 都 是 维 京 。',
|
46 |
+
'score': 0.010197942145168781,
|
47 |
+
'token': 5335,
|
48 |
+
'token_str': '维'},
|
49 |
+
{'sequence': '中 国 的 首 都 是 汴 京 。',
|
50 |
+
'score': 0.0075391442514956,
|
51 |
+
'token': 3745,
|
52 |
+
'token_str': '汴'}
|
53 |
+
]
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
58 |
+
|
59 |
```python
|
60 |
+
from transformers import BertTokenizer, AlbertModel
|
61 |
+
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
62 |
+
model = AlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
63 |
+
text = "用你喜欢的任何文本替换我。"
|
64 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
65 |
+
output = model(**encoded_input)
|
66 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
and in TensorFlow:
|
69 |
+
|
70 |
+
```python
|
71 |
+
from transformers import BertTokenizer, TFAlbertModel
|
72 |
+
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
73 |
+
model = TFAlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
|
74 |
+
text = "用你喜欢的任何文本替换我。"
|
75 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
76 |
+
output = model(encoded_input)
|
77 |
```
|
78 |
|
79 |
## Training data
|
80 |
+
|
81 |
+
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data.
|
82 |
+
|
83 |
## Training procedure
|
|
|
|
|
84 |
|
85 |
+
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.
|
86 |
+
|
87 |
+
Taking the case of ALBERT-Base
|
88 |
+
|
89 |
+
Stage1:
|
90 |
+
|
91 |
```
|
92 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
|
93 |
+
--vocab_path models/google_zh_vocab.txt \
|
94 |
+
--dataset_path cluecorpussmall_albert_seq128_dataset.pt \
|
95 |
+
--seq_length 128 --processes_num 32 --target albert
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
```
|
97 |
|
|
|
98 |
```
|
99 |
+
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq128_dataset.pt \
|
100 |
+
--vocab_path models/google_zh_vocab.txt \
|
101 |
+
--config_path models/albert/base_config.json \
|
102 |
+
--output_model_path models/cluecorpussmall_albert_base_seq128_model.bin \
|
103 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
104 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
|
105 |
+
--learning_rate 1e-4 --batch_size 64 \
|
106 |
+
--factorized_embedding_parameterization --parameter_sharing \
|
107 |
+
--embedding word_pos_seg --encoder transformer --mask fully_visible --target albert
|
108 |
+
```
|
109 |
|
110 |
+
Stage2:
|
111 |
+
|
112 |
+
```
|
113 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
|
114 |
+
--vocab_path models/google_zh_vocab.txt \
|
115 |
+
--dataset_path cluecorpussmall_albert_seq512_dataset.pt \
|
116 |
+
--seq_length 512 --processes_num 32 --target albert
|
117 |
+
```
|
118 |
+
|
119 |
+
```
|
120 |
+
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq512_dataset.pt \
|
121 |
+
--pretrained_model_path models/cluecorpussmall_albert_base_seq128_model.bin-1000000 \
|
122 |
+
--vocab_path models/google_zh_vocab.txt \
|
123 |
+
--config_path models/albert/base_config.json \
|
124 |
+
--output_model_path models/cluecorpussmall_albert_base_seq512_model.bin \
|
125 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
126 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
|
127 |
+
--learning_rate 1e-4 --batch_size 64 \
|
128 |
+
--factorized_embedding_parameterization --parameter_sharing \
|
129 |
+
--embedding word_pos_seg --encoder transformer --mask fully_visible --target albert
|
130 |
+
```
|
131 |
+
|
132 |
+
Finally, we convert the pre-trained model into Huggingface's format:
|
133 |
+
|
134 |
+
```
|
135 |
+
python3 scripts/convert_albert_from_uer_to_huggingface.py --input_model_path cluecorpussmall_albert_base_seq512_model.bin-250000 \
|
136 |
+
--output_model_path pytorch_model.bin
|
137 |
+
```
|
138 |
+
|
139 |
+
### BibTeX entry and citation info
|
140 |
+
|
141 |
+
```
|
142 |
+
@article{lan2019albert,
|
143 |
+
title={Albert: A lite bert for self-supervised learning of language representations},
|
144 |
+
author={Lan, Zhenzhong and Chen, Mingda and Goodman, Sebastian and Gimpel, Kevin and Sharma, Piyush and Soricut, Radu},
|
145 |
+
journal={arXiv preprint arXiv:1909.11942},
|
146 |
+
year={2019}
|
147 |
}
|
148 |
|
149 |
+
@article{zhao2019uer,
|
150 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
151 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
152 |
+
journal={EMNLP-IJCNLP 2019},
|
153 |
+
pages={241},
|
154 |
+
year={2019}
|
155 |
}
|
156 |
```
|
157 |
[base]:https://huggingface.co/uer/albert-base-chinese-cluecorpussmall
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "albert",
|
3 |
+
"architectures": [
|
4 |
+
"AlbertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0,
|
7 |
+
"bos_token_id": 2,
|
8 |
+
"classifier_dropout_prob": 0.1,
|
9 |
+
"embedding_size": 128,
|
10 |
+
"eos_token_id": 3,
|
11 |
+
"hidden_act": "relu",
|
12 |
+
"hidden_dropout_prob": 0,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"inner_group_num": 1,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"layer_norm_eps": 1e-12,
|
18 |
+
"max_position_embeddings": 512,
|
19 |
+
"model_type": "albert",
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_hidden_groups": 1,
|
22 |
+
"num_hidden_layers": 12,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"position_embedding_type": "absolute",
|
25 |
+
"tokenizer_class": "BertTokenizer",
|
26 |
+
"transformers_version": "4.6.0",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"vocab_size": 21128
|
29 |
+
}
|
69.pt → pytorch_model.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e90c5f6b64fda667d9a10a8065878a4790515a0df171e361787354b25526141
|
3 |
+
size 40325143
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00b2f0b8fa2b513f5dde4fe14f25978c459e1381cb7ff0fd259fc98c4a6b4d61
|
3 |
+
size 51528256
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512}
|
train_conformer_large_w2v.yaml
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
# network architecture
|
2 |
-
# encoder related
|
3 |
-
encoder: conformer
|
4 |
-
encoder_conf:
|
5 |
-
output_size: 512 # dimension of attention
|
6 |
-
attention_heads: 8
|
7 |
-
linear_units: 2048 # the number of units of position-wise feed forward
|
8 |
-
num_blocks: 18 # the number of encoder blocks
|
9 |
-
dropout_rate: 0.1
|
10 |
-
positional_dropout_rate: 0.0
|
11 |
-
attention_dropout_rate: 0.0
|
12 |
-
input_layer: conv2d6 # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
13 |
-
normalize_before: true
|
14 |
-
cnn_module_kernel: 15
|
15 |
-
use_cnn_module: True
|
16 |
-
activation_type: 'swish'
|
17 |
-
macaron_style: True
|
18 |
-
pos_enc_layer_type: 'rel_pos'
|
19 |
-
selfattention_layer_type: 'abs_selfattn'
|
20 |
-
nonorm: False
|
21 |
-
cnn_prev: True
|
22 |
-
cnn_after: False
|
23 |
-
|
24 |
-
# decoder related
|
25 |
-
decoder: transformer
|
26 |
-
decoder_conf:
|
27 |
-
attention_heads: 4
|
28 |
-
linear_units: 2048
|
29 |
-
num_blocks: 1
|
30 |
-
dropout_rate: 0.0
|
31 |
-
positional_dropout_rate: 0.0
|
32 |
-
self_attention_dropout_rate: 0.0
|
33 |
-
src_attention_dropout_rate: 0.0
|
34 |
-
|
35 |
-
# hybrid CTC/attention
|
36 |
-
model_conf:
|
37 |
-
ctc_weight: 1.0
|
38 |
-
lsm_weight: 0.1 # label smoothing option
|
39 |
-
length_normalized_loss: false
|
40 |
-
|
41 |
-
raw_wav: False
|
42 |
-
data_save: True
|
43 |
-
use_gc: True
|
44 |
-
|
45 |
-
w2v_encoder: True
|
46 |
-
pretrain: True
|
47 |
-
random_pretrain: False
|
48 |
-
wav2vec: True
|
49 |
-
w2v_coef: 1.0
|
50 |
-
|
51 |
-
mpc_didi_ver: False
|
52 |
-
wav2mpc: False
|
53 |
-
wav2mpc_reduction: False
|
54 |
-
mpc_mask_loss: False
|
55 |
-
mpc_coef: 0.0
|
56 |
-
|
57 |
-
mask: True
|
58 |
-
quantize_targets: True
|
59 |
-
project_targets: True
|
60 |
-
latent_vars: 320
|
61 |
-
w2v_reduct: True
|
62 |
-
w2v_ext_loss: True
|
63 |
-
w2v_loss_weights: [0.1,0]
|
64 |
-
|
65 |
-
w2v_mask_prob: 0.65
|
66 |
-
mpc_prob: 0.5
|
67 |
-
|
68 |
-
remove_valbest: False
|
69 |
-
|
70 |
-
model:
|
71 |
-
method: 'npc' # Accepts npc/apc/vqapc
|
72 |
-
paras:
|
73 |
-
kernel_size: 15 # Receptive field size (R) = kernel_size + 2*(n_blocks)
|
74 |
-
mask_size: 5 # Desired input mask size (M_in) as described in NPC paper
|
75 |
-
n_blocks: 4 # Number of ConvBlocks stacked in NPC model
|
76 |
-
hidden_size: 512 # Dimension of feature of all layers
|
77 |
-
dropout: 0.1 # Dropout in ConvBlock
|
78 |
-
residual: True # Residual connection in ConvBlock
|
79 |
-
batch_norm: True # Apply BatchNorm in ConvBlock
|
80 |
-
activate: 'relu' # Activation function of ConvBlock
|
81 |
-
disable_cross_layer: False # Apply Masked ConvBlock at last layer only
|
82 |
-
vq:
|
83 |
-
codebook_size: [64,64,64,64] # Codebook size of each group in VQ-layer
|
84 |
-
code_dim: [128,128,128,128] # Dim of each group summing up to hidden_size
|
85 |
-
gumbel_temperature: 1.0 # Temperature of Gumbel Softmax in VQ-layer
|
86 |
-
|
87 |
-
collate_conf:
|
88 |
-
spec_aug: false
|
89 |
-
|
90 |
-
# specaugmentation related
|
91 |
-
spec_aug_conf:
|
92 |
-
num_time_mask: 2
|
93 |
-
num_freq_mask: 2
|
94 |
-
max_time_mask: 50
|
95 |
-
max_freq_mask: 10
|
96 |
-
max_time_warp: 80
|
97 |
-
gauss_mask_for_time: False
|
98 |
-
warp_for_time: False
|
99 |
-
|
100 |
-
# dataset related
|
101 |
-
dataset_conf:
|
102 |
-
max_length: 4500
|
103 |
-
min_length: 80
|
104 |
-
max_frames_in_batch: 16000
|
105 |
-
batch_type: 'dynamic' # static or dynamic
|
106 |
-
batch_size: 20
|
107 |
-
sort: true
|
108 |
-
|
109 |
-
grad_clip: 10
|
110 |
-
accum_grad: 2
|
111 |
-
max_epoch: 180
|
112 |
-
log_interval: 100
|
113 |
-
|
114 |
-
optim: adam
|
115 |
-
optim_conf:
|
116 |
-
lr: 0.001
|
117 |
-
scheduler: warmuplr # pytorch v1.1.0+ required
|
118 |
-
scheduler_conf:
|
119 |
-
warmup_steps: 10000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|