--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # keyphrase-mpnet-v1 This is a [sentence-transformers](https://www.SBERT.net) model specialized for phrases: It maps phrases to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. In the original paper, this model is used for calculating semantic-based evaluation metrics of keyphrase models. This model is based on [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) and further fine-tuned on 1 million keyphrase data with SimCSE. ## Citing & Authors Paper: [KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems](https://arxiv.org/abs/2303.15422) ``` @article{wu2023kpeval, title={KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems}, author={Di Wu and Da Yin and Kai-Wei Chang}, year={2023}, eprint={2303.15422}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer phrases = ["information retrieval", "text mining", "natural language processing"] model = SentenceTransformer('uclanlp/keyphrase-mpnet-v1') embeddings = model.encode(phrases) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for phrases = ["information retrieval", "text mining", "natural language processing"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('uclanlp/keyphrase-mpnet-v1') model = AutoModel.from_pretrained('uclanlp/keyphrase-mpnet-v1') # Tokenize sentences encoded_input = tokenizer(phrases, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Phrase embeddings:") print(sentence_embeddings) ``` ## Training The model is trained on phrases from four keyphrase datasets covering a wide range of domains. | Dataset Name | Domain | Number of Phrases | |-------------------------------------------------------------|---------------|-------------------| | [KP20k](https://www.aclweb.org/anthology/P17-1054/) | Science | 715369 | | [KPTimes](https://www.aclweb.org/anthology/W19-8617/) | News | 113456 | | [StackEx](https://www.aclweb.org/anthology/2020.acl-main.710/) | Online Forum | 8149 | | [OpenKP](https://www.aclweb.org/anthology/D19-1521/) | Web | 200335 | | **Total** | | **1030309** | The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2025 with parameters: ``` {'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 1e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 203, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 12, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```