File size: 5,086 Bytes
17e4359
e376ca6
 
 
 
 
 
 
17e4359
e376ca6
0113c8b
e376ca6
d1ce89a
e376ca6
f6d4e26
0113c8b
 
 
 
 
 
 
 
 
 
 
 
 
e376ca6
 
 
 
 
 
 
 
 
 
 
 
 
f6d4e26
e376ca6
7d51217
f6d4e26
e376ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d4e26
e376ca6
 
7d51217
 
e376ca6
 
f6d4e26
e376ca6
 
 
 
 
 
 
 
7d51217
e376ca6
 
 
 
283390e
 
 
 
 
 
 
 
 
 
f6d4e26
 
 
e376ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers

---

# keyphrase-mpnet-v1

This is a [sentence-transformers](https://www.SBERT.net) model specialized for phrases: It maps phrases to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. In the original paper, this model is used for calculating semantic-based evaluation metrics of keyphrase models.

This model is based on [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) and further fine-tuned on 1 million keyphrase data with SimCSE.

## Citing & Authors
Paper: [KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems](https://arxiv.org/abs/2303.15422)
```
@article{wu2023kpeval,
      title={KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems}, 
      author={Di Wu and Da Yin and Kai-Wei Chang},
      year={2023},
      eprint={2303.15422},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
phrases = ["information retrieval", "text mining", "natural language processing"]

model = SentenceTransformer('uclanlp/keyphrase-mpnet-v1')
embeddings = model.encode(phrases)
print(embeddings)
```

## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
phrases = ["information retrieval", "text mining", "natural language processing"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('uclanlp/keyphrase-mpnet-v1')
model = AutoModel.from_pretrained('uclanlp/keyphrase-mpnet-v1')

# Tokenize sentences
encoded_input = tokenizer(phrases, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Phrase embeddings:")
print(sentence_embeddings)
```

## Training
The model is trained on phrases from four keyphrase datasets covering a wide range of domains.

| Dataset Name                                                | Domain        | Number of Phrases |
|-------------------------------------------------------------|---------------|-------------------|
| [KP20k](https://www.aclweb.org/anthology/P17-1054/)         | Science       | 715369            |
| [KPTimes](https://www.aclweb.org/anthology/W19-8617/)       | News          | 113456            |
| [StackEx](https://www.aclweb.org/anthology/2020.acl-main.710/) | Online Forum | 8149              |
| [OpenKP](https://www.aclweb.org/anthology/D19-1521/)        | Web           | 200335            |
| **Total**                                                   |               | **1030309**       |


The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 2025 with parameters:
```
{'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 1,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 1e-06
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 203,
    "weight_decay": 0.01
}
```

## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 12, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```