uaritm commited on
Commit
172d1cc
·
1 Parent(s): cbc51d4

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -26,3 +26,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
30
+ model_head.pkl filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,15 +1,126 @@
1
  ---
2
- language:
3
- - ru
4
- - uk
5
- - multilingual
6
- license: mit
7
  tags:
8
- - russian
9
- - ukrainian
 
 
 
10
  ---
11
 
12
- #
13
- The model was trained on the Russian-Ukrainian dataset. Questions-answers of medical subjects (neurology-psychotherapy).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
- The model is not a medical application and it is strongly discouraged to use the model for medical purposes!
 
1
  ---
2
+ pipeline_tag: sentence-similarity
 
 
 
 
3
  tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+
9
  ---
10
 
11
+ # {MODEL_NAME}
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Usage (HuggingFace Transformers)
39
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel
43
+ import torch
44
+
45
+
46
+ #Mean Pooling - Take attention mask into account for correct averaging
47
+ def mean_pooling(model_output, attention_mask):
48
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
+
52
+
53
+ # Sentences we want sentence embeddings for
54
+ sentences = ['This is an example sentence', 'Each sentence is converted']
55
+
56
+ # Load model from HuggingFace Hub
57
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
59
+
60
+ # Tokenize sentences
61
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
+
63
+ # Compute token embeddings
64
+ with torch.no_grad():
65
+ model_output = model(**encoded_input)
66
+
67
+ # Perform pooling. In this case, mean pooling.
68
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
+
70
+ print("Sentence embeddings:")
71
+ print(sentence_embeddings)
72
+ ```
73
+
74
+
75
+
76
+ ## Evaluation Results
77
+
78
+ <!--- Describe how your model was evaluated -->
79
+
80
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
+
82
+
83
+ ## Training
84
+ The model was trained with the parameters:
85
+
86
+ **DataLoader**:
87
+
88
+ `torch.utils.data.dataloader.DataLoader` of length 120 with parameters:
89
+ ```
90
+ {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
+ ```
92
+
93
+ **Loss**:
94
+
95
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
+
97
+ Parameters of the fit()-Method:
98
+ ```
99
+ {
100
+ "epochs": 1,
101
+ "evaluation_steps": 0,
102
+ "evaluator": "NoneType",
103
+ "max_grad_norm": 1,
104
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
+ "optimizer_params": {
106
+ "lr": 2e-05
107
+ },
108
+ "scheduler": "WarmupLinear",
109
+ "steps_per_epoch": 120,
110
+ "warmup_steps": 12,
111
+ "weight_decay": 0.01
112
+ }
113
+ ```
114
+
115
+
116
+ ## Full Model Architecture
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
120
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
+ )
122
+ ```
123
+
124
+ ## Citing & Authors
125
 
126
+ <!--- Describe where people can find more information -->
config.json CHANGED
@@ -1,31 +1,29 @@
1
  {
2
- "_name_or_path": "uaritm/lik_neuro_202",
3
  "architectures": [
4
- "T5ForConditionalGeneration"
5
  ],
6
- "d_ff": 2048,
7
- "d_kv": 64,
8
- "d_model": 768,
9
- "decoder_start_token_id": 0,
10
- "dropout_rate": 0.1,
11
- "eos_token_id": 1,
12
- "feed_forward_proj": "gated-gelu",
13
  "gradient_checkpointing": false,
14
- "initializer_factor": 1.0,
15
- "is_encoder_decoder": true,
16
- "layer_norm_epsilon": 1e-06,
17
- "model_type": "t5",
18
- "num_decoder_layers": 12,
19
- "num_heads": 12,
20
- "num_layers": 12,
 
 
 
21
  "output_past": true,
22
- "pad_token_id": 0,
23
- "relative_attention_max_distance": 128,
24
- "relative_attention_num_buckets": 32,
25
- "tie_word_embeddings": false,
26
- "tokenizer_class": "T5Tokenizer",
27
  "torch_dtype": "float32",
28
- "transformers_version": "4.16.2",
 
29
  "use_cache": true,
30
- "vocab_size": 30000
31
  }
 
1
  {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-mpnet-base-v2/",
3
  "architectures": [
4
+ "XLMRobertaModel"
5
  ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
 
 
 
10
  "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
  "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
 
 
 
24
  "torch_dtype": "float32",
25
+ "transformers_version": "4.26.0",
26
+ "type_vocab_size": 1,
27
  "use_cache": true,
28
+ "vocab_size": 250002
29
  }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab9d9ad8ade2dec1fbe3a4cc4819101cb83302aa1885b28559c3b8d74ca27c04
3
+ size 10500
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8da0a3234ad37bee5dd92dddad396614130726c06d7440f32de5cb5bbf92fd00
3
- size 977359949
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b55830ac41241258bf61a84e5649985addafbe9f1180ff3c18ed87c5718a2ace
3
+ size 1112242989
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json CHANGED
@@ -1 +1,15 @@
1
- {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b60b6b43406a48bf3638526314f3d232d97058bc93472ff2de930d43686fa441
3
+ size 17082913
tokenizer_config.json CHANGED
@@ -1 +1,20 @@
1
- {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 0, "additional_special_tokens": null, "sp_model_kwargs": {}, "special_tokens_map_file": "rut5-base/special_tokens_map.json", "tokenizer_file": null, "name_or_path": "uaritm/lik_neuro_202", "tokenizer_class": "T5Tokenizer"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "__type": "AddedToken",
7
+ "content": "<mask>",
8
+ "lstrip": true,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "model_max_length": 512,
14
+ "name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-mpnet-base-v2/",
15
+ "pad_token": "<pad>",
16
+ "sep_token": "</s>",
17
+ "special_tokens_map_file": null,
18
+ "tokenizer_class": "XLMRobertaTokenizer",
19
+ "unk_token": "<unk>"
20
+ }