--- license: apache-2.0 base_model: facebook/wav2vec2-large-lv60 tags: - automatic-speech-recognition - edinburghcstr/ami - generated_from_trainer datasets: - ami metrics: - wer model-index: - name: facebook/wav2vec2-large-lv60 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: EDINBURGHCSTR/AMI - IHM type: ami config: ihm split: None args: 'Config: ihm, Training split: train, Eval split: validation' metrics: - name: Wer type: wer value: 0.9542044754234227 --- # facebook/wav2vec2-large-lv60 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co./facebook/wav2vec2-large-lv60) on the EDINBURGHCSTR/AMI - IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.2723 - Wer: 0.9542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.0919 | 0.1565 | 1000 | 1.0169 | 0.7064 | | 1.4768 | 0.3131 | 2000 | 0.7156 | 0.4356 | | 0.9728 | 0.4696 | 3000 | 0.6462 | 0.4030 | | 0.5418 | 0.6262 | 4000 | 0.6171 | 0.3707 | | 0.8492 | 0.7827 | 5000 | 0.5758 | 0.3695 | | 1.4826 | 0.9393 | 6000 | 0.5801 | 0.3545 | | 0.3274 | 1.0958 | 7000 | 0.5244 | 0.3375 | | 0.2089 | 1.2523 | 8000 | 0.5047 | 0.3239 | | 0.2916 | 1.4089 | 9000 | 0.4901 | 0.3171 | | 0.1617 | 1.5654 | 10000 | 0.5070 | 0.3151 | | 0.3815 | 1.7220 | 11000 | 0.4948 | 0.3180 | | 1.0171 | 1.8785 | 12000 | 0.9465 | 0.8379 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0a0+gitcd033a1 - Datasets 2.19.1 - Tokenizers 0.19.1