--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: finetune_v8 results: [] --- # finetune_v8 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4224 - Wer: 102.2241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 80 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 10.0 | 10 | 0.5239 | 19.1617 | | No log | 20.0 | 20 | 0.4346 | 18.0496 | | No log | 30.0 | 30 | 0.4050 | 17.1942 | | No log | 40.0 | 40 | 0.4204 | 18.4773 | | 0.0997 | 50.0 | 50 | 0.4294 | 20.6159 | | 0.0997 | 60.0 | 60 | 0.4282 | 19.6749 | | 0.0997 | 70.0 | 70 | 0.4246 | 23.9521 | | 0.0997 | 80.0 | 80 | 0.4224 | 102.2241 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.2.0 - Datasets 2.20.0 - Tokenizers 0.19.1