--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: finetune_v15 results: [] --- # finetune_v15 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7837 - Wer: 193.6017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 80 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 6.1538 | 10 | 0.7300 | 34.1589 | | No log | 12.3077 | 20 | 0.7090 | 39.9381 | | No log | 18.4615 | 30 | 0.7617 | 33.2559 | | No log | 24.6154 | 40 | 0.7676 | 33.4107 | | 0.223 | 30.7692 | 50 | 0.7749 | 199.6646 | | 0.223 | 36.9231 | 60 | 0.7764 | 164.3189 | | 0.223 | 43.0769 | 70 | 0.7827 | 202.6574 | | 0.223 | 49.2308 | 80 | 0.7837 | 193.6017 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.2.0 - Datasets 2.20.0 - Tokenizers 0.19.1