File size: 8,681 Bytes
c2908a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
{
  "results": {
    "lambada_openai": {
      "perplexity,none": 27.470935147560528,
      "perplexity_stderr,none": 1.0435144103317135,
      "acc,none": 0.3526101300213468,
      "acc_stderr,none": 0.006656446028047874,
      "alias": "lambada_openai"
    },
    "hellaswag": {
      "acc,none": 0.3329018123879705,
      "acc_stderr,none": 0.004702886273189427,
      "acc_norm,none": 0.3973312089225254,
      "acc_norm_stderr,none": 0.004883455188908959,
      "alias": "hellaswag"
    }
  },
  "group_subtasks": {
    "hellaswag": [],
    "lambada_openai": []
  },
  "configs": {
    "hellaswag": {
      "task": "hellaswag",
      "group": [
        "multiple_choice"
      ],
      "dataset_path": "hellaswag",
      "training_split": "train",
      "validation_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc):\n        ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n        out_doc = {\n            \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n            \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n            \"gold\": int(doc[\"label\"]),\n        }\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{label}}",
      "doc_to_choice": "choices",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 10,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "lambada_openai": {
      "task": "lambada_openai",
      "group": [
        "lambada"
      ],
      "dataset_path": "EleutherAI/lambada_openai",
      "dataset_name": "default",
      "test_split": "test",
      "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
      "doc_to_target": "{{' '+text.split(' ')[-1]}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 10,
      "metric_list": [
        {
          "metric": "perplexity",
          "aggregation": "perplexity",
          "higher_is_better": false
        },
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "loglikelihood",
      "repeats": 1,
      "should_decontaminate": true,
      "doc_to_decontamination_query": "{{text}}",
      "metadata": {
        "version": 1.0
      }
    }
  },
  "versions": {
    "hellaswag": 1.0,
    "lambada_openai": 1.0
  },
  "n-shot": {
    "hellaswag": 10,
    "lambada_openai": 10
  },
  "config": {
    "model": "hf",
    "model_args": "pretrained=/home/aiops/zhuty/tinyllama/out/tiny_LLaMA_1b_8k_cc_merged_v2_8k/iter-300000-ckpt-step-37500_hf,dtype=float,tokenizer=meta-llama/Llama-2-7b-hf",
    "batch_size": "4",
    "batch_sizes": [],
    "device": "cuda:0",
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null
  },
  "git_hash": null,
  "pretty_env_info": "PyTorch version: 2.1.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 20.04.6 LTS (x86_64)\nGCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0\nClang version: Could not collect\nCMake version: version 3.26.4\nLibc version: glibc-2.31\n\nPython version: 3.8.18 (default, Sep 11 2023, 13:40:15)  [GCC 11.2.0] (64-bit runtime)\nPython platform: Linux-5.4.0-166-generic-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 11.8.89\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB\nNvidia driver version: 535.129.03\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                       x86_64\nCPU op-mode(s):                     32-bit, 64-bit\nByte Order:                         Little Endian\nAddress sizes:                      43 bits physical, 48 bits virtual\nCPU(s):                             256\nOn-line CPU(s) list:                0-255\nThread(s) per core:                 2\nCore(s) per socket:                 64\nSocket(s):                          2\nNUMA node(s):                       8\nVendor ID:                          AuthenticAMD\nCPU family:                         23\nModel:                              49\nModel name:                         AMD EPYC 7742 64-Core Processor\nStepping:                           0\nFrequency boost:                    enabled\nCPU MHz:                            2928.014\nCPU max MHz:                        2250.0000\nCPU min MHz:                        1500.0000\nBogoMIPS:                           4491.36\nVirtualization:                     AMD-V\nL1d cache:                          4 MiB\nL1i cache:                          4 MiB\nL2 cache:                           64 MiB\nL3 cache:                           512 MiB\nNUMA node0 CPU(s):                  0-15,128-143\nNUMA node1 CPU(s):                  16-31,144-159\nNUMA node2 CPU(s):                  32-47,160-175\nNUMA node3 CPU(s):                  48-63,176-191\nNUMA node4 CPU(s):                  64-79,192-207\nNUMA node5 CPU(s):                  80-95,208-223\nNUMA node6 CPU(s):                  96-111,224-239\nNUMA node7 CPU(s):                  112-127,240-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit:        Not affected\nVulnerability L1tf:                 Not affected\nVulnerability Mds:                  Not affected\nVulnerability Meltdown:             Not affected\nVulnerability Mmio stale data:      Not affected\nVulnerability Retbleed:             Vulnerable\nVulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:           Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds:                Not affected\nVulnerability Tsx async abort:      Not affected\nFlags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca sme sev sev_es\n\nVersions of relevant libraries:\n[pip3] numpy==1.22.4\n[pip3] pytorch-lightning==2.1.3\n[pip3] torch==2.1.0\n[pip3] torchmetrics==1.3.0.post0\n[pip3] triton==2.1.0\n[conda] mkl                       2024.0.0                 pypi_0    pypi\n[conda] mkl-fft                   1.3.1                    pypi_0    pypi\n[conda] mkl-service               2.4.0                    pypi_0    pypi\n[conda] numpy                     1.22.4                   pypi_0    pypi\n[conda] pytorch-lightning         2.1.3                    pypi_0    pypi\n[conda] torch                     2.1.0                    pypi_0    pypi\n[conda] torchmetrics              1.3.0.post0              pypi_0    pypi\n[conda] triton                    2.1.0                    pypi_0    pypi",
  "transformers_version": "4.34.0",
  "upper_git_hash": null
}