--- language: - multilingual license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper large-v3 nan-tw results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_16_0 config: nan-tw split: test args: 'config: nan-tw, split: test' metrics: - name: Wer type: wer value: 280.9248554913295 --- # Whisper large-v3 nan-tw This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0601 - Wer: 280.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 0.2485 | 3.05 | 1000 | 0.9971 | 538.5505 | | 0.0154 | 6.1 | 2000 | 1.0482 | 1460.5158 | | 0.0024 | 9.15 | 3000 | 1.0330 | 261.3161 | | 0.0014 | 12.2 | 4000 | 1.0554 | 300.3112 | | 0.0003 | 15.24 | 5000 | 1.0601 | 280.9249 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1