Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +721 -3
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,721 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-base-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- accuracy
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
tags:
|
9 |
+
- setfit
|
10 |
+
- sentence-transformers
|
11 |
+
- text-classification
|
12 |
+
- generated_from_setfit_trainer
|
13 |
+
widget:
|
14 |
+
- text: Discussion on recent report publication
|
15 |
+
- text: Growth
|
16 |
+
- text: The roundtable was arranged in order to provide an overview of the work of
|
17 |
+
Alliance members and promote international development policy positions to the
|
18 |
+
Scottish Conservatives. During the meeting we presented the work of SCIAF and
|
19 |
+
its campaign for a world leading climate change response. In particular SCIAF
|
20 |
+
explained how climate change is already affecting some of the poorest communities
|
21 |
+
in the world and is therefore a central concern for international development.
|
22 |
+
We argued that Scotland needs to do what it can to mitigate climate change.
|
23 |
+
- text: To introduce Energy UK discuss the energy industries contribution to tackling
|
24 |
+
climate change and discuss stage 1 of theClimate Change (Emissions Reduction Targets)
|
25 |
+
(Scotland) Bill. Also discussed the Scottish Government's ambition on electric
|
26 |
+
vehicles and the role of the energy industry in a successful roll out.
|
27 |
+
- text: To discuss our key asks on the Climate Change (Emissions Reduction Targets)
|
28 |
+
(Scotland) Bill in advance of Stage 2 including support for amendments on regional
|
29 |
+
land use partnerships and land use strategy as means to deliver climate mitigation
|
30 |
+
for land.
|
31 |
+
inference: false
|
32 |
+
model-index:
|
33 |
+
- name: SetFit with BAAI/bge-base-en-v1.5
|
34 |
+
results:
|
35 |
+
- task:
|
36 |
+
type: text-classification
|
37 |
+
name: Text Classification
|
38 |
+
dataset:
|
39 |
+
name: Unknown
|
40 |
+
type: unknown
|
41 |
+
split: test
|
42 |
+
metrics:
|
43 |
+
- type: f1
|
44 |
+
value: 0.9667149059334297
|
45 |
+
name: F1
|
46 |
+
- type: accuracy
|
47 |
+
value: 0.9420654911838791
|
48 |
+
name: Accuracy
|
49 |
+
---
|
50 |
+
|
51 |
+
# SetFit with BAAI/bge-base-en-v1.5
|
52 |
+
|
53 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
|
54 |
+
|
55 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
56 |
+
|
57 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
58 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
59 |
+
|
60 |
+
## Model Details
|
61 |
+
|
62 |
+
### Model Description
|
63 |
+
- **Model Type:** SetFit
|
64 |
+
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
|
65 |
+
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
|
66 |
+
- **Maximum Sequence Length:** 512 tokens
|
67 |
+
<!-- - **Number of Classes:** Unknown -->
|
68 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
69 |
+
<!-- - **Language:** Unknown -->
|
70 |
+
<!-- - **License:** Unknown -->
|
71 |
+
|
72 |
+
### Model Sources
|
73 |
+
|
74 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
75 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
76 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
77 |
+
|
78 |
+
## Evaluation
|
79 |
+
|
80 |
+
### Metrics
|
81 |
+
| Label | F1 | Accuracy |
|
82 |
+
|:--------|:-------|:---------|
|
83 |
+
| **all** | 0.9667 | 0.9421 |
|
84 |
+
|
85 |
+
## Uses
|
86 |
+
|
87 |
+
### Direct Use for Inference
|
88 |
+
|
89 |
+
First install the SetFit library:
|
90 |
+
|
91 |
+
```bash
|
92 |
+
pip install setfit
|
93 |
+
```
|
94 |
+
|
95 |
+
Then you can load this model and run inference.
|
96 |
+
|
97 |
+
```python
|
98 |
+
from setfit import SetFitModel
|
99 |
+
|
100 |
+
# Download from the 🤗 Hub
|
101 |
+
model = SetFitModel.from_pretrained("twright8/setfit_lobbying_classifier")
|
102 |
+
# Run inference
|
103 |
+
preds = model("Growth")
|
104 |
+
```
|
105 |
+
|
106 |
+
<!--
|
107 |
+
### Downstream Use
|
108 |
+
|
109 |
+
*List how someone could finetune this model on their own dataset.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Out-of-Scope Use
|
114 |
+
|
115 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
<!--
|
119 |
+
## Bias, Risks and Limitations
|
120 |
+
|
121 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
<!--
|
125 |
+
### Recommendations
|
126 |
+
|
127 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
128 |
+
-->
|
129 |
+
|
130 |
+
## Training Details
|
131 |
+
|
132 |
+
### Training Set Metrics
|
133 |
+
| Training set | Min | Median | Max |
|
134 |
+
|:-------------|:----|:--------|:----|
|
135 |
+
| Word count | 1 | 39.4538 | 282 |
|
136 |
+
|
137 |
+
### Training Hyperparameters
|
138 |
+
- batch_size: (16, 2)
|
139 |
+
- num_epochs: (4, 9)
|
140 |
+
- max_steps: -1
|
141 |
+
- sampling_strategy: undersampling
|
142 |
+
- body_learning_rate: (1.0797496673911536e-05, 3.457046714445997e-05)
|
143 |
+
- head_learning_rate: 0.0004470582121407239
|
144 |
+
- loss: CoSENTLoss
|
145 |
+
- distance_metric: cosine_distance
|
146 |
+
- margin: 0.25
|
147 |
+
- end_to_end: True
|
148 |
+
- use_amp: False
|
149 |
+
- warmup_proportion: 0.1
|
150 |
+
- seed: 42
|
151 |
+
- eval_max_steps: -1
|
152 |
+
- load_best_model_at_end: True
|
153 |
+
|
154 |
+
### Training Results
|
155 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
156 |
+
|:-------:|:--------:|:-------------:|:---------------:|
|
157 |
+
| 0.0002 | 1 | 2.097 | - |
|
158 |
+
| 0.0077 | 50 | 8.5514 | - |
|
159 |
+
| 0.0155 | 100 | 3.5635 | - |
|
160 |
+
| 0.0232 | 150 | 2.9266 | - |
|
161 |
+
| 0.0310 | 200 | 2.1173 | - |
|
162 |
+
| 0.0387 | 250 | 3.1002 | - |
|
163 |
+
| 0.0465 | 300 | 3.6942 | - |
|
164 |
+
| 0.0542 | 350 | 3.4905 | - |
|
165 |
+
| 0.0620 | 400 | 4.0804 | - |
|
166 |
+
| 0.0697 | 450 | 1.6071 | - |
|
167 |
+
| 0.0774 | 500 | 2.3018 | - |
|
168 |
+
| 0.0852 | 550 | 2.3876 | - |
|
169 |
+
| 0.0929 | 600 | 0.2511 | - |
|
170 |
+
| 0.1007 | 650 | 0.2435 | - |
|
171 |
+
| 0.1084 | 700 | 2.2596 | - |
|
172 |
+
| 0.1162 | 750 | 1.121 | - |
|
173 |
+
| 0.1239 | 800 | 0.0907 | - |
|
174 |
+
| 0.1317 | 850 | 0.2172 | - |
|
175 |
+
| 0.1394 | 900 | 3.06 | - |
|
176 |
+
| 0.1471 | 950 | 0.0074 | - |
|
177 |
+
| 0.1549 | 1000 | 0.457 | - |
|
178 |
+
| 0.1626 | 1050 | 0.0575 | - |
|
179 |
+
| 0.1704 | 1100 | 0.0002 | - |
|
180 |
+
| 0.1781 | 1150 | 0.0003 | - |
|
181 |
+
| 0.1859 | 1200 | 0.0047 | - |
|
182 |
+
| 0.1936 | 1250 | 0.0004 | - |
|
183 |
+
| 0.2014 | 1300 | 0.0006 | - |
|
184 |
+
| 0.2091 | 1350 | 0.0027 | - |
|
185 |
+
| 0.2169 | 1400 | 0.0004 | - |
|
186 |
+
| 0.2246 | 1450 | 0.0009 | - |
|
187 |
+
| 0.2323 | 1500 | 0.0006 | - |
|
188 |
+
| 0.2401 | 1550 | 0.0003 | - |
|
189 |
+
| 0.2478 | 1600 | 0.0077 | - |
|
190 |
+
| 0.2556 | 1650 | 0.0004 | - |
|
191 |
+
| 0.2633 | 1700 | 0.0003 | - |
|
192 |
+
| 0.2711 | 1750 | 0.0005 | - |
|
193 |
+
| 0.2788 | 1800 | 0.0004 | - |
|
194 |
+
| 0.2866 | 1850 | 0.0007 | - |
|
195 |
+
| 0.2943 | 1900 | 0.0009 | - |
|
196 |
+
| 0.3020 | 1950 | 0.0062 | - |
|
197 |
+
| 0.3098 | 2000 | 0.0003 | - |
|
198 |
+
| 0.3175 | 2050 | 0.0001 | - |
|
199 |
+
| 0.3253 | 2100 | 0.0685 | - |
|
200 |
+
| 0.3330 | 2150 | 0.0008 | - |
|
201 |
+
| 0.3408 | 2200 | 0.0 | - |
|
202 |
+
| 0.3485 | 2250 | 0.0004 | - |
|
203 |
+
| 0.3563 | 2300 | 0.0004 | - |
|
204 |
+
| 0.3640 | 2350 | 0.0002 | - |
|
205 |
+
| 0.3717 | 2400 | 0.0001 | - |
|
206 |
+
| 0.3795 | 2450 | 0.0004 | - |
|
207 |
+
| 0.3872 | 2500 | 0.0004 | - |
|
208 |
+
| 0.3950 | 2550 | 0.0001 | - |
|
209 |
+
| 0.4027 | 2600 | 0.0001 | - |
|
210 |
+
| 0.4105 | 2650 | 0.0001 | - |
|
211 |
+
| 0.4182 | 2700 | 0.0005 | - |
|
212 |
+
| 0.4260 | 2750 | 0.0002 | - |
|
213 |
+
| 0.4337 | 2800 | 0.0001 | - |
|
214 |
+
| 0.4414 | 2850 | 0.0003 | - |
|
215 |
+
| 0.4492 | 2900 | 0.0005 | - |
|
216 |
+
| 0.4569 | 2950 | 0.0014 | - |
|
217 |
+
| 0.4647 | 3000 | 0.0001 | - |
|
218 |
+
| 0.4724 | 3050 | 0.0001 | - |
|
219 |
+
| 0.4802 | 3100 | 0.0002 | - |
|
220 |
+
| 0.4879 | 3150 | 0.0 | - |
|
221 |
+
| 0.4957 | 3200 | 0.0006 | - |
|
222 |
+
| 0.5034 | 3250 | 0.0 | - |
|
223 |
+
| 0.5112 | 3300 | 0.0 | - |
|
224 |
+
| 0.5189 | 3350 | 0.0002 | - |
|
225 |
+
| 0.5266 | 3400 | 0.0001 | - |
|
226 |
+
| 0.5344 | 3450 | 0.0006 | - |
|
227 |
+
| 0.5421 | 3500 | 0.0002 | - |
|
228 |
+
| 0.5499 | 3550 | 0.0001 | - |
|
229 |
+
| 0.5576 | 3600 | 0.0001 | - |
|
230 |
+
| 0.5654 | 3650 | 0.0001 | - |
|
231 |
+
| 0.5731 | 3700 | 0.0 | - |
|
232 |
+
| 0.5809 | 3750 | 0.0002 | - |
|
233 |
+
| 0.5886 | 3800 | 0.0 | - |
|
234 |
+
| 0.5963 | 3850 | 0.0044 | - |
|
235 |
+
| 0.6041 | 3900 | 0.0002 | - |
|
236 |
+
| 0.6118 | 3950 | 0.0001 | - |
|
237 |
+
| 0.6196 | 4000 | 0.0003 | - |
|
238 |
+
| 0.6273 | 4050 | 0.0005 | - |
|
239 |
+
| 0.6351 | 4100 | 0.0002 | - |
|
240 |
+
| 0.6428 | 4150 | 0.0 | - |
|
241 |
+
| 0.6506 | 4200 | 0.0003 | - |
|
242 |
+
| 0.6583 | 4250 | 0.0 | - |
|
243 |
+
| 0.6660 | 4300 | 0.0001 | - |
|
244 |
+
| 0.6738 | 4350 | 0.0 | - |
|
245 |
+
| 0.6815 | 4400 | 0.0008 | - |
|
246 |
+
| 0.6893 | 4450 | 0.0 | - |
|
247 |
+
| 0.6970 | 4500 | 0.0004 | - |
|
248 |
+
| 0.7048 | 4550 | 0.0001 | - |
|
249 |
+
| 0.7125 | 4600 | 0.0 | - |
|
250 |
+
| 0.7203 | 4650 | 0.0 | - |
|
251 |
+
| 0.7280 | 4700 | 0.0 | - |
|
252 |
+
| 0.7357 | 4750 | 0.0001 | - |
|
253 |
+
| 0.7435 | 4800 | 0.0001 | - |
|
254 |
+
| 0.7512 | 4850 | 0.001 | - |
|
255 |
+
| 0.7590 | 4900 | 0.0001 | - |
|
256 |
+
| 0.7667 | 4950 | 0.0 | - |
|
257 |
+
| 0.7745 | 5000 | 0.0001 | - |
|
258 |
+
| 0.7822 | 5050 | 0.0 | - |
|
259 |
+
| 0.7900 | 5100 | 0.0018 | - |
|
260 |
+
| 0.7977 | 5150 | 0.0001 | - |
|
261 |
+
| 0.8055 | 5200 | 0.0 | - |
|
262 |
+
| 0.8132 | 5250 | 0.0003 | - |
|
263 |
+
| 0.8209 | 5300 | 0.0003 | - |
|
264 |
+
| 0.8287 | 5350 | 0.0003 | - |
|
265 |
+
| 0.8364 | 5400 | 0.0001 | - |
|
266 |
+
| 0.8442 | 5450 | 0.0001 | - |
|
267 |
+
| 0.8519 | 5500 | 0.0001 | - |
|
268 |
+
| 0.8597 | 5550 | 0.0001 | - |
|
269 |
+
| 0.8674 | 5600 | 0.0001 | - |
|
270 |
+
| 0.8752 | 5650 | 0.0 | - |
|
271 |
+
| 0.8829 | 5700 | 0.0003 | - |
|
272 |
+
| 0.8906 | 5750 | 0.0003 | - |
|
273 |
+
| 0.8984 | 5800 | 0.0001 | - |
|
274 |
+
| 0.9061 | 5850 | 0.0001 | - |
|
275 |
+
| 0.9139 | 5900 | 0.0002 | - |
|
276 |
+
| 0.9216 | 5950 | 0.0 | - |
|
277 |
+
| 0.9294 | 6000 | 0.0001 | - |
|
278 |
+
| 0.9371 | 6050 | 0.0 | - |
|
279 |
+
| 0.9449 | 6100 | 0.0 | - |
|
280 |
+
| 0.9526 | 6150 | 0.0001 | - |
|
281 |
+
| 0.9603 | 6200 | 0.0 | - |
|
282 |
+
| 0.9681 | 6250 | 0.0001 | - |
|
283 |
+
| 0.9758 | 6300 | 0.0002 | - |
|
284 |
+
| 0.9836 | 6350 | 0.0 | - |
|
285 |
+
| 0.9913 | 6400 | 0.0 | - |
|
286 |
+
| 0.9991 | 6450 | 0.0002 | - |
|
287 |
+
| **1.0** | **6456** | **-** | **1.3837** |
|
288 |
+
| 1.0068 | 6500 | 0.0001 | - |
|
289 |
+
| 1.0146 | 6550 | 0.0001 | - |
|
290 |
+
| 1.0223 | 6600 | 0.0002 | - |
|
291 |
+
| 1.0300 | 6650 | 0.0001 | - |
|
292 |
+
| 1.0378 | 6700 | 0.0005 | - |
|
293 |
+
| 1.0455 | 6750 | 0.0001 | - |
|
294 |
+
| 1.0533 | 6800 | 0.0001 | - |
|
295 |
+
| 1.0610 | 6850 | 0.0 | - |
|
296 |
+
| 1.0688 | 6900 | 0.0 | - |
|
297 |
+
| 1.0765 | 6950 | 0.0009 | - |
|
298 |
+
| 1.0843 | 7000 | 0.0 | - |
|
299 |
+
| 1.0920 | 7050 | 0.0032 | - |
|
300 |
+
| 1.0998 | 7100 | 0.0001 | - |
|
301 |
+
| 1.1075 | 7150 | 0.0001 | - |
|
302 |
+
| 1.1152 | 7200 | 0.0001 | - |
|
303 |
+
| 1.1230 | 7250 | 0.0 | - |
|
304 |
+
| 1.1307 | 7300 | 0.0001 | - |
|
305 |
+
| 1.1385 | 7350 | 0.0 | - |
|
306 |
+
| 1.1462 | 7400 | 0.0 | - |
|
307 |
+
| 1.1540 | 7450 | 0.0002 | - |
|
308 |
+
| 1.1617 | 7500 | 0.0 | - |
|
309 |
+
| 1.1695 | 7550 | 0.0427 | - |
|
310 |
+
| 1.1772 | 7600 | 0.0 | - |
|
311 |
+
| 1.1849 | 7650 | 0.0 | - |
|
312 |
+
| 1.1927 | 7700 | 0.0 | - |
|
313 |
+
| 1.2004 | 7750 | 0.0002 | - |
|
314 |
+
| 1.2082 | 7800 | 0.0 | - |
|
315 |
+
| 1.2159 | 7850 | 0.0 | - |
|
316 |
+
| 1.2237 | 7900 | 0.0 | - |
|
317 |
+
| 1.2314 | 7950 | 0.0 | - |
|
318 |
+
| 1.2392 | 8000 | 0.0001 | - |
|
319 |
+
| 1.2469 | 8050 | 0.0 | - |
|
320 |
+
| 1.2546 | 8100 | 0.0001 | - |
|
321 |
+
| 1.2624 | 8150 | 0.0 | - |
|
322 |
+
| 1.2701 | 8200 | 0.0 | - |
|
323 |
+
| 1.2779 | 8250 | 0.0 | - |
|
324 |
+
| 1.2856 | 8300 | 0.0 | - |
|
325 |
+
| 1.2934 | 8350 | 0.0 | - |
|
326 |
+
| 1.3011 | 8400 | 0.0 | - |
|
327 |
+
| 1.3089 | 8450 | 0.0 | - |
|
328 |
+
| 1.3166 | 8500 | 0.0 | - |
|
329 |
+
| 1.3243 | 8550 | 0.0001 | - |
|
330 |
+
| 1.3321 | 8600 | 0.0 | - |
|
331 |
+
| 1.3398 | 8650 | 0.0002 | - |
|
332 |
+
| 1.3476 | 8700 | 0.0 | - |
|
333 |
+
| 1.3553 | 8750 | 0.0006 | - |
|
334 |
+
| 1.3631 | 8800 | 0.0 | - |
|
335 |
+
| 1.3708 | 8850 | 0.0 | - |
|
336 |
+
| 1.3786 | 8900 | 0.0001 | - |
|
337 |
+
| 1.3863 | 8950 | 0.0 | - |
|
338 |
+
| 1.3941 | 9000 | 0.0001 | - |
|
339 |
+
| 1.4018 | 9050 | 0.0 | - |
|
340 |
+
| 1.4095 | 9100 | 0.0002 | - |
|
341 |
+
| 1.4173 | 9150 | 0.0 | - |
|
342 |
+
| 1.4250 | 9200 | 0.0 | - |
|
343 |
+
| 1.4328 | 9250 | 0.0 | - |
|
344 |
+
| 1.4405 | 9300 | 0.0 | - |
|
345 |
+
| 1.4483 | 9350 | 0.0 | - |
|
346 |
+
| 1.4560 | 9400 | 0.0 | - |
|
347 |
+
| 1.4638 | 9450 | 0.0 | - |
|
348 |
+
| 1.4715 | 9500 | 0.0 | - |
|
349 |
+
| 1.4792 | 9550 | 0.0 | - |
|
350 |
+
| 1.4870 | 9600 | 0.0 | - |
|
351 |
+
| 1.4947 | 9650 | 0.0005 | - |
|
352 |
+
| 1.5025 | 9700 | 0.0 | - |
|
353 |
+
| 1.5102 | 9750 | 0.0001 | - |
|
354 |
+
| 1.5180 | 9800 | 0.0001 | - |
|
355 |
+
| 1.5257 | 9850 | 0.0001 | - |
|
356 |
+
| 1.5335 | 9900 | 0.0 | - |
|
357 |
+
| 1.5412 | 9950 | 0.0 | - |
|
358 |
+
| 1.5489 | 10000 | 0.0 | - |
|
359 |
+
| 1.5567 | 10050 | 0.0 | - |
|
360 |
+
| 1.5644 | 10100 | 0.0001 | - |
|
361 |
+
| 1.5722 | 10150 | 0.0 | - |
|
362 |
+
| 1.5799 | 10200 | 0.0002 | - |
|
363 |
+
| 1.5877 | 10250 | 0.0001 | - |
|
364 |
+
| 1.5954 | 10300 | 0.0005 | - |
|
365 |
+
| 1.6032 | 10350 | 0.0 | - |
|
366 |
+
| 1.6109 | 10400 | 0.0 | - |
|
367 |
+
| 1.6186 | 10450 | 0.0003 | - |
|
368 |
+
| 1.6264 | 10500 | 0.0002 | - |
|
369 |
+
| 1.6341 | 10550 | 0.0 | - |
|
370 |
+
| 1.6419 | 10600 | 0.0 | - |
|
371 |
+
| 1.6496 | 10650 | 0.0001 | - |
|
372 |
+
| 1.6574 | 10700 | 0.0002 | - |
|
373 |
+
| 1.6651 | 10750 | 0.0002 | - |
|
374 |
+
| 1.6729 | 10800 | 0.0054 | - |
|
375 |
+
| 1.6806 | 10850 | 0.0005 | - |
|
376 |
+
| 1.6884 | 10900 | 0.0001 | - |
|
377 |
+
| 1.6961 | 10950 | 0.0 | - |
|
378 |
+
| 1.7038 | 11000 | 0.0 | - |
|
379 |
+
| 1.7116 | 11050 | 0.0001 | - |
|
380 |
+
| 1.7193 | 11100 | 0.0001 | - |
|
381 |
+
| 1.7271 | 11150 | 0.0 | - |
|
382 |
+
| 1.7348 | 11200 | 0.0001 | - |
|
383 |
+
| 1.7426 | 11250 | 0.0 | - |
|
384 |
+
| 1.7503 | 11300 | 0.0001 | - |
|
385 |
+
| 1.7581 | 11350 | 0.0004 | - |
|
386 |
+
| 1.7658 | 11400 | 0.0 | - |
|
387 |
+
| 1.7735 | 11450 | 0.0001 | - |
|
388 |
+
| 1.7813 | 11500 | 0.0 | - |
|
389 |
+
| 1.7890 | 11550 | 0.0 | - |
|
390 |
+
| 1.7968 | 11600 | 0.0 | - |
|
391 |
+
| 1.8045 | 11650 | 0.0 | - |
|
392 |
+
| 1.8123 | 11700 | 0.0001 | - |
|
393 |
+
| 1.8200 | 11750 | 0.0002 | - |
|
394 |
+
| 1.8278 | 11800 | 0.0 | - |
|
395 |
+
| 1.8355 | 11850 | 0.0001 | - |
|
396 |
+
| 1.8432 | 11900 | 0.0 | - |
|
397 |
+
| 1.8510 | 11950 | 0.0001 | - |
|
398 |
+
| 1.8587 | 12000 | 0.0 | - |
|
399 |
+
| 1.8665 | 12050 | 0.0 | - |
|
400 |
+
| 1.8742 | 12100 | 0.0 | - |
|
401 |
+
| 1.8820 | 12150 | 0.0001 | - |
|
402 |
+
| 1.8897 | 12200 | 0.0 | - |
|
403 |
+
| 1.8975 | 12250 | 0.0 | - |
|
404 |
+
| 1.9052 | 12300 | 0.0 | - |
|
405 |
+
| 1.9129 | 12350 | 0.0 | - |
|
406 |
+
| 1.9207 | 12400 | 0.0 | - |
|
407 |
+
| 1.9284 | 12450 | 0.0 | - |
|
408 |
+
| 1.9362 | 12500 | 0.0 | - |
|
409 |
+
| 1.9439 | 12550 | 0.0003 | - |
|
410 |
+
| 1.9517 | 12600 | 0.0001 | - |
|
411 |
+
| 1.9594 | 12650 | 0.0 | - |
|
412 |
+
| 1.9672 | 12700 | 0.0001 | - |
|
413 |
+
| 1.9749 | 12750 | 0.0 | - |
|
414 |
+
| 1.9827 | 12800 | 0.0 | - |
|
415 |
+
| 1.9904 | 12850 | 0.0 | - |
|
416 |
+
| 1.9981 | 12900 | 0.0001 | - |
|
417 |
+
| 2.0 | 12912 | - | 2.611 |
|
418 |
+
| 2.0059 | 12950 | 0.0 | - |
|
419 |
+
| 2.0136 | 13000 | 0.0001 | - |
|
420 |
+
| 2.0214 | 13050 | 0.0001 | - |
|
421 |
+
| 2.0291 | 13100 | 0.0 | - |
|
422 |
+
| 2.0369 | 13150 | 0.0 | - |
|
423 |
+
| 2.0446 | 13200 | 0.0001 | - |
|
424 |
+
| 2.0524 | 13250 | 0.0 | - |
|
425 |
+
| 2.0601 | 13300 | 0.0002 | - |
|
426 |
+
| 2.0678 | 13350 | 0.0 | - |
|
427 |
+
| 2.0756 | 13400 | 0.0 | - |
|
428 |
+
| 2.0833 | 13450 | 0.0001 | - |
|
429 |
+
| 2.0911 | 13500 | 0.0001 | - |
|
430 |
+
| 2.0988 | 13550 | 0.0003 | - |
|
431 |
+
| 2.1066 | 13600 | 0.0 | - |
|
432 |
+
| 2.1143 | 13650 | 0.0001 | - |
|
433 |
+
| 2.1221 | 13700 | 0.0001 | - |
|
434 |
+
| 2.1298 | 13750 | 0.0001 | - |
|
435 |
+
| 2.1375 | 13800 | 0.0001 | - |
|
436 |
+
| 2.1453 | 13850 | 0.0 | - |
|
437 |
+
| 2.1530 | 13900 | 0.0 | - |
|
438 |
+
| 2.1608 | 13950 | 0.0 | - |
|
439 |
+
| 2.1685 | 14000 | 0.0 | - |
|
440 |
+
| 2.1763 | 14050 | 0.0 | - |
|
441 |
+
| 2.1840 | 14100 | 0.0001 | - |
|
442 |
+
| 2.1918 | 14150 | 0.0 | - |
|
443 |
+
| 2.1995 | 14200 | 0.0 | - |
|
444 |
+
| 2.2072 | 14250 | 0.0001 | - |
|
445 |
+
| 2.2150 | 14300 | 0.0 | - |
|
446 |
+
| 2.2227 | 14350 | 0.0 | - |
|
447 |
+
| 2.2305 | 14400 | 0.0004 | - |
|
448 |
+
| 2.2382 | 14450 | 0.0001 | - |
|
449 |
+
| 2.2460 | 14500 | 0.0 | - |
|
450 |
+
| 2.2537 | 14550 | 0.0003 | - |
|
451 |
+
| 2.2615 | 14600 | 0.0 | - |
|
452 |
+
| 2.2692 | 14650 | 0.0001 | - |
|
453 |
+
| 2.2770 | 14700 | 0.0001 | - |
|
454 |
+
| 2.2847 | 14750 | 0.0 | - |
|
455 |
+
| 2.2924 | 14800 | 0.0 | - |
|
456 |
+
| 2.3002 | 14850 | 0.0005 | - |
|
457 |
+
| 2.3079 | 14900 | 0.0 | - |
|
458 |
+
| 2.3157 | 14950 | 0.0002 | - |
|
459 |
+
| 2.3234 | 15000 | 0.0 | - |
|
460 |
+
| 2.3312 | 15050 | 0.0 | - |
|
461 |
+
| 2.3389 | 15100 | 0.0001 | - |
|
462 |
+
| 2.3467 | 15150 | 0.0001 | - |
|
463 |
+
| 2.3544 | 15200 | 0.0002 | - |
|
464 |
+
| 2.3621 | 15250 | 0.0001 | - |
|
465 |
+
| 2.3699 | 15300 | 0.0 | - |
|
466 |
+
| 2.3776 | 15350 | 0.0 | - |
|
467 |
+
| 2.3854 | 15400 | 0.0002 | - |
|
468 |
+
| 2.3931 | 15450 | 0.0003 | - |
|
469 |
+
| 2.4009 | 15500 | 0.0 | - |
|
470 |
+
| 2.4086 | 15550 | 0.0 | - |
|
471 |
+
| 2.4164 | 15600 | 0.0 | - |
|
472 |
+
| 2.4241 | 15650 | 0.0001 | - |
|
473 |
+
| 2.4318 | 15700 | 0.0 | - |
|
474 |
+
| 2.4396 | 15750 | 0.0 | - |
|
475 |
+
| 2.4473 | 15800 | 0.0002 | - |
|
476 |
+
| 2.4551 | 15850 | 0.0 | - |
|
477 |
+
| 2.4628 | 15900 | 0.0 | - |
|
478 |
+
| 2.4706 | 15950 | 0.0 | - |
|
479 |
+
| 2.4783 | 16000 | 0.0 | - |
|
480 |
+
| 2.4861 | 16050 | 0.0001 | - |
|
481 |
+
| 2.4938 | 16100 | 0.0 | - |
|
482 |
+
| 2.5015 | 16150 | 0.0 | - |
|
483 |
+
| 2.5093 | 16200 | 0.0 | - |
|
484 |
+
| 2.5170 | 16250 | 0.0 | - |
|
485 |
+
| 2.5248 | 16300 | 0.0 | - |
|
486 |
+
| 2.5325 | 16350 | 0.0 | - |
|
487 |
+
| 2.5403 | 16400 | 0.0 | - |
|
488 |
+
| 2.5480 | 16450 | 0.0 | - |
|
489 |
+
| 2.5558 | 16500 | 0.0 | - |
|
490 |
+
| 2.5635 | 16550 | 0.0001 | - |
|
491 |
+
| 2.5713 | 16600 | 0.0 | - |
|
492 |
+
| 2.5790 | 16650 | 0.0 | - |
|
493 |
+
| 2.5867 | 16700 | 0.0 | - |
|
494 |
+
| 2.5945 | 16750 | 0.0 | - |
|
495 |
+
| 2.6022 | 16800 | 0.0009 | - |
|
496 |
+
| 2.6100 | 16850 | 0.0001 | - |
|
497 |
+
| 2.6177 | 16900 | 0.0 | - |
|
498 |
+
| 2.6255 | 16950 | 0.0001 | - |
|
499 |
+
| 2.6332 | 17000 | 0.0 | - |
|
500 |
+
| 2.6410 | 17050 | 0.0 | - |
|
501 |
+
| 2.6487 | 17100 | 0.0001 | - |
|
502 |
+
| 2.6564 | 17150 | 0.0 | - |
|
503 |
+
| 2.6642 | 17200 | 0.0 | - |
|
504 |
+
| 2.6719 | 17250 | 0.0 | - |
|
505 |
+
| 2.6797 | 17300 | 0.0 | - |
|
506 |
+
| 2.6874 | 17350 | 0.0004 | - |
|
507 |
+
| 2.6952 | 17400 | 0.0 | - |
|
508 |
+
| 2.7029 | 17450 | 0.0 | - |
|
509 |
+
| 2.7107 | 17500 | 0.0 | - |
|
510 |
+
| 2.7184 | 17550 | 0.0 | - |
|
511 |
+
| 2.7261 | 17600 | 0.0 | - |
|
512 |
+
| 2.7339 | 17650 | 0.0 | - |
|
513 |
+
| 2.7416 | 17700 | 0.0001 | - |
|
514 |
+
| 2.7494 | 17750 | 0.0 | - |
|
515 |
+
| 2.7571 | 17800 | 0.0 | - |
|
516 |
+
| 2.7649 | 17850 | 0.0001 | - |
|
517 |
+
| 2.7726 | 17900 | 0.0 | - |
|
518 |
+
| 2.7804 | 17950 | 0.0001 | - |
|
519 |
+
| 2.7881 | 18000 | 0.0001 | - |
|
520 |
+
| 2.7958 | 18050 | 0.0 | - |
|
521 |
+
| 2.8036 | 18100 | 0.0 | - |
|
522 |
+
| 2.8113 | 18150 | 0.0 | - |
|
523 |
+
| 2.8191 | 18200 | 0.0 | - |
|
524 |
+
| 2.8268 | 18250 | 0.0 | - |
|
525 |
+
| 2.8346 | 18300 | 0.0001 | - |
|
526 |
+
| 2.8423 | 18350 | 0.0 | - |
|
527 |
+
| 2.8501 | 18400 | 0.0 | - |
|
528 |
+
| 2.8578 | 18450 | 0.0 | - |
|
529 |
+
| 2.8656 | 18500 | 0.0 | - |
|
530 |
+
| 2.8733 | 18550 | 0.0 | - |
|
531 |
+
| 2.8810 | 18600 | 0.0 | - |
|
532 |
+
| 2.8888 | 18650 | 0.0 | - |
|
533 |
+
| 2.8965 | 18700 | 0.0 | - |
|
534 |
+
| 2.9043 | 18750 | 0.0 | - |
|
535 |
+
| 2.9120 | 18800 | 0.0001 | - |
|
536 |
+
| 2.9198 | 18850 | 0.0 | - |
|
537 |
+
| 2.9275 | 18900 | 0.0 | - |
|
538 |
+
| 2.9353 | 18950 | 0.0 | - |
|
539 |
+
| 2.9430 | 19000 | 0.0 | - |
|
540 |
+
| 2.9507 | 19050 | 0.0 | - |
|
541 |
+
| 2.9585 | 19100 | 0.0 | - |
|
542 |
+
| 2.9662 | 19150 | 0.0 | - |
|
543 |
+
| 2.9740 | 19200 | 0.0 | - |
|
544 |
+
| 2.9817 | 19250 | 0.0003 | - |
|
545 |
+
| 2.9895 | 19300 | 0.0001 | - |
|
546 |
+
| 2.9972 | 19350 | 0.0 | - |
|
547 |
+
| 3.0 | 19368 | - | 2.0845 |
|
548 |
+
| 3.0050 | 19400 | 0.0 | - |
|
549 |
+
| 3.0127 | 19450 | 0.0001 | - |
|
550 |
+
| 3.0204 | 19500 | 0.0 | - |
|
551 |
+
| 3.0282 | 19550 | 0.0 | - |
|
552 |
+
| 3.0359 | 19600 | 0.0 | - |
|
553 |
+
| 3.0437 | 19650 | 0.0 | - |
|
554 |
+
| 3.0514 | 19700 | 0.0 | - |
|
555 |
+
| 3.0592 | 19750 | 0.0 | - |
|
556 |
+
| 3.0669 | 19800 | 0.0001 | - |
|
557 |
+
| 3.0747 | 19850 | 0.0 | - |
|
558 |
+
| 3.0824 | 19900 | 0.0 | - |
|
559 |
+
| 3.0901 | 19950 | 0.0001 | - |
|
560 |
+
| 3.0979 | 20000 | 0.0 | - |
|
561 |
+
| 3.1056 | 20050 | 0.0 | - |
|
562 |
+
| 3.1134 | 20100 | 0.0 | - |
|
563 |
+
| 3.1211 | 20150 | 0.0001 | - |
|
564 |
+
| 3.1289 | 20200 | 0.0 | - |
|
565 |
+
| 3.1366 | 20250 | 0.0 | - |
|
566 |
+
| 3.1444 | 20300 | 0.0 | - |
|
567 |
+
| 3.1521 | 20350 | 0.0 | - |
|
568 |
+
| 3.1599 | 20400 | 0.0 | - |
|
569 |
+
| 3.1676 | 20450 | 0.0001 | - |
|
570 |
+
| 3.1753 | 20500 | 0.0 | - |
|
571 |
+
| 3.1831 | 20550 | 0.0001 | - |
|
572 |
+
| 3.1908 | 20600 | 0.0 | - |
|
573 |
+
| 3.1986 | 20650 | 0.0 | - |
|
574 |
+
| 3.2063 | 20700 | 0.0 | - |
|
575 |
+
| 3.2141 | 20750 | 0.0 | - |
|
576 |
+
| 3.2218 | 20800 | 0.0 | - |
|
577 |
+
| 3.2296 | 20850 | 0.0003 | - |
|
578 |
+
| 3.2373 | 20900 | 0.0 | - |
|
579 |
+
| 3.2450 | 20950 | 0.0 | - |
|
580 |
+
| 3.2528 | 21000 | 0.0 | - |
|
581 |
+
| 3.2605 | 21050 | 0.0 | - |
|
582 |
+
| 3.2683 | 21100 | 0.0001 | - |
|
583 |
+
| 3.2760 | 21150 | 0.0001 | - |
|
584 |
+
| 3.2838 | 21200 | 0.0 | - |
|
585 |
+
| 3.2915 | 21250 | 0.0 | - |
|
586 |
+
| 3.2993 | 21300 | 0.0 | - |
|
587 |
+
| 3.3070 | 21350 | 0.0 | - |
|
588 |
+
| 3.3147 | 21400 | 0.0 | - |
|
589 |
+
| 3.3225 | 21450 | 0.0001 | - |
|
590 |
+
| 3.3302 | 21500 | 0.0 | - |
|
591 |
+
| 3.3380 | 21550 | 0.0 | - |
|
592 |
+
| 3.3457 | 21600 | 0.0 | - |
|
593 |
+
| 3.3535 | 21650 | 0.0 | - |
|
594 |
+
| 3.3612 | 21700 | 0.0 | - |
|
595 |
+
| 3.3690 | 21750 | 0.0 | - |
|
596 |
+
| 3.3767 | 21800 | 0.0 | - |
|
597 |
+
| 3.3844 | 21850 | 0.0 | - |
|
598 |
+
| 3.3922 | 21900 | 0.0001 | - |
|
599 |
+
| 3.3999 | 21950 | 0.0 | - |
|
600 |
+
| 3.4077 | 22000 | 0.0 | - |
|
601 |
+
| 3.4154 | 22050 | 0.0001 | - |
|
602 |
+
| 3.4232 | 22100 | 0.0 | - |
|
603 |
+
| 3.4309 | 22150 | 0.0001 | - |
|
604 |
+
| 3.4387 | 22200 | 0.0 | - |
|
605 |
+
| 3.4464 | 22250 | 0.0 | - |
|
606 |
+
| 3.4542 | 22300 | 0.0 | - |
|
607 |
+
| 3.4619 | 22350 | 0.0001 | - |
|
608 |
+
| 3.4696 | 22400 | 0.0 | - |
|
609 |
+
| 3.4774 | 22450 | 0.0 | - |
|
610 |
+
| 3.4851 | 22500 | 0.0 | - |
|
611 |
+
| 3.4929 | 22550 | 0.0001 | - |
|
612 |
+
| 3.5006 | 22600 | 0.0002 | - |
|
613 |
+
| 3.5084 | 22650 | 0.0001 | - |
|
614 |
+
| 3.5161 | 22700 | 0.0 | - |
|
615 |
+
| 3.5239 | 22750 | 0.0001 | - |
|
616 |
+
| 3.5316 | 22800 | 0.0 | - |
|
617 |
+
| 3.5393 | 22850 | 0.0 | - |
|
618 |
+
| 3.5471 | 22900 | 0.0001 | - |
|
619 |
+
| 3.5548 | 22950 | 0.0 | - |
|
620 |
+
| 3.5626 | 23000 | 0.0 | - |
|
621 |
+
| 3.5703 | 23050 | 0.0 | - |
|
622 |
+
| 3.5781 | 23100 | 0.0 | - |
|
623 |
+
| 3.5858 | 23150 | 0.0001 | - |
|
624 |
+
| 3.5936 | 23200 | 0.0 | - |
|
625 |
+
| 3.6013 | 23250 | 0.0001 | - |
|
626 |
+
| 3.6090 | 23300 | 0.0001 | - |
|
627 |
+
| 3.6168 | 23350 | 0.0 | - |
|
628 |
+
| 3.6245 | 23400 | 0.0003 | - |
|
629 |
+
| 3.6323 | 23450 | 0.0 | - |
|
630 |
+
| 3.6400 | 23500 | 0.0 | - |
|
631 |
+
| 3.6478 | 23550 | 0.0001 | - |
|
632 |
+
| 3.6555 | 23600 | 0.0 | - |
|
633 |
+
| 3.6633 | 23650 | 0.0 | - |
|
634 |
+
| 3.6710 | 23700 | 0.0 | - |
|
635 |
+
| 3.6787 | 23750 | 0.0001 | - |
|
636 |
+
| 3.6865 | 23800 | 0.0 | - |
|
637 |
+
| 3.6942 | 23850 | 0.0001 | - |
|
638 |
+
| 3.7020 | 23900 | 0.0002 | - |
|
639 |
+
| 3.7097 | 23950 | 0.0 | - |
|
640 |
+
| 3.7175 | 24000 | 0.0 | - |
|
641 |
+
| 3.7252 | 24050 | 0.0 | - |
|
642 |
+
| 3.7330 | 24100 | 0.0 | - |
|
643 |
+
| 3.7407 | 24150 | 0.0001 | - |
|
644 |
+
| 3.7485 | 24200 | 0.0 | - |
|
645 |
+
| 3.7562 | 24250 | 0.0 | - |
|
646 |
+
| 3.7639 | 24300 | 0.0 | - |
|
647 |
+
| 3.7717 | 24350 | 0.0 | - |
|
648 |
+
| 3.7794 | 24400 | 0.0 | - |
|
649 |
+
| 3.7872 | 24450 | 0.0 | - |
|
650 |
+
| 3.7949 | 24500 | 0.0001 | - |
|
651 |
+
| 3.8027 | 24550 | 0.0001 | - |
|
652 |
+
| 3.8104 | 24600 | 0.0 | - |
|
653 |
+
| 3.8182 | 24650 | 0.0 | - |
|
654 |
+
| 3.8259 | 24700 | 0.0 | - |
|
655 |
+
| 3.8336 | 24750 | 0.0 | - |
|
656 |
+
| 3.8414 | 24800 | 0.0001 | - |
|
657 |
+
| 3.8491 | 24850 | 0.0 | - |
|
658 |
+
| 3.8569 | 24900 | 0.0 | - |
|
659 |
+
| 3.8646 | 24950 | 0.0 | - |
|
660 |
+
| 3.8724 | 25000 | 0.0 | - |
|
661 |
+
| 3.8801 | 25050 | 0.0 | - |
|
662 |
+
| 3.8879 | 25100 | 0.0 | - |
|
663 |
+
| 3.8956 | 25150 | 0.0001 | - |
|
664 |
+
| 3.9033 | 25200 | 0.0 | - |
|
665 |
+
| 3.9111 | 25250 | 0.0002 | - |
|
666 |
+
| 3.9188 | 25300 | 0.0001 | - |
|
667 |
+
| 3.9266 | 25350 | 0.0 | - |
|
668 |
+
| 3.9343 | 25400 | 0.0 | - |
|
669 |
+
| 3.9421 | 25450 | 0.0 | - |
|
670 |
+
| 3.9498 | 25500 | 0.0001 | - |
|
671 |
+
| 3.9576 | 25550 | 0.0 | - |
|
672 |
+
| 3.9653 | 25600 | 0.0 | - |
|
673 |
+
| 3.9730 | 25650 | 0.0001 | - |
|
674 |
+
| 3.9808 | 25700 | 0.0 | - |
|
675 |
+
| 3.9885 | 25750 | 0.0 | - |
|
676 |
+
| 3.9963 | 25800 | 0.0 | - |
|
677 |
+
| 4.0 | 25824 | - | 2.3576 |
|
678 |
+
|
679 |
+
* The bold row denotes the saved checkpoint.
|
680 |
+
### Framework Versions
|
681 |
+
- Python: 3.10.12
|
682 |
+
- SetFit: 1.0.3
|
683 |
+
- Sentence Transformers: 3.0.1
|
684 |
+
- Transformers: 4.39.0
|
685 |
+
- PyTorch: 2.3.0+cu121
|
686 |
+
- Datasets: 2.20.0
|
687 |
+
- Tokenizers: 0.15.2
|
688 |
+
|
689 |
+
## Citation
|
690 |
+
|
691 |
+
### BibTeX
|
692 |
+
```bibtex
|
693 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
694 |
+
doi = {10.48550/ARXIV.2209.11055},
|
695 |
+
url = {https://arxiv.org/abs/2209.11055},
|
696 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
697 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
698 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
699 |
+
publisher = {arXiv},
|
700 |
+
year = {2022},
|
701 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
702 |
+
}
|
703 |
+
```
|
704 |
+
|
705 |
+
<!--
|
706 |
+
## Glossary
|
707 |
+
|
708 |
+
*Clearly define terms in order to be accessible across audiences.*
|
709 |
+
-->
|
710 |
+
|
711 |
+
<!--
|
712 |
+
## Model Card Authors
|
713 |
+
|
714 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
715 |
+
-->
|
716 |
+
|
717 |
+
<!--
|
718 |
+
## Model Card Contact
|
719 |
+
|
720 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
721 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_6456",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.39.0",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.39.0",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b311c28ad1eb2ca69dbd902051060f08a5a933db4cb7cba41a565630d6ed6b9
|
3 |
+
size 437951328
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e02f9dc457f58e786c76960ab24a128037d22d1ce8a7ac3ac10c3187dc1422a
|
3 |
+
size 13854
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|