twright8 commited on
Commit
fedbfd1
1 Parent(s): 958cf2c

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,721 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - f1
6
+ - accuracy
7
+ pipeline_tag: text-classification
8
+ tags:
9
+ - setfit
10
+ - sentence-transformers
11
+ - text-classification
12
+ - generated_from_setfit_trainer
13
+ widget:
14
+ - text: Discussion on recent report publication
15
+ - text: Growth
16
+ - text: The roundtable was arranged in order to provide an overview of the work of
17
+ Alliance members and promote international development policy positions to the
18
+ Scottish Conservatives. During the meeting we presented the work of SCIAF and
19
+ its campaign for a world leading climate change response. In particular SCIAF
20
+ explained how climate change is already affecting some of the poorest communities
21
+ in the world and is therefore a central concern for international development.
22
+ We argued that Scotland needs to do what it can to mitigate climate change.
23
+ - text: To introduce Energy UK discuss the energy industries contribution to tackling
24
+ climate change and discuss stage 1 of theClimate Change (Emissions Reduction Targets)
25
+ (Scotland) Bill. Also discussed the Scottish Government's ambition on electric
26
+ vehicles and the role of the energy industry in a successful roll out.
27
+ - text: To discuss our key asks on the Climate Change (Emissions Reduction Targets)
28
+ (Scotland) Bill in advance of Stage 2 including support for amendments on regional
29
+ land use partnerships and land use strategy as means to deliver climate mitigation
30
+ for land.
31
+ inference: false
32
+ model-index:
33
+ - name: SetFit with BAAI/bge-base-en-v1.5
34
+ results:
35
+ - task:
36
+ type: text-classification
37
+ name: Text Classification
38
+ dataset:
39
+ name: Unknown
40
+ type: unknown
41
+ split: test
42
+ metrics:
43
+ - type: f1
44
+ value: 0.9667149059334297
45
+ name: F1
46
+ - type: accuracy
47
+ value: 0.9420654911838791
48
+ name: Accuracy
49
+ ---
50
+
51
+ # SetFit with BAAI/bge-base-en-v1.5
52
+
53
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
54
+
55
+ The model has been trained using an efficient few-shot learning technique that involves:
56
+
57
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
58
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
59
+
60
+ ## Model Details
61
+
62
+ ### Model Description
63
+ - **Model Type:** SetFit
64
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
65
+ - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
66
+ - **Maximum Sequence Length:** 512 tokens
67
+ <!-- - **Number of Classes:** Unknown -->
68
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
69
+ <!-- - **Language:** Unknown -->
70
+ <!-- - **License:** Unknown -->
71
+
72
+ ### Model Sources
73
+
74
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
75
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
76
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
77
+
78
+ ## Evaluation
79
+
80
+ ### Metrics
81
+ | Label | F1 | Accuracy |
82
+ |:--------|:-------|:---------|
83
+ | **all** | 0.9667 | 0.9421 |
84
+
85
+ ## Uses
86
+
87
+ ### Direct Use for Inference
88
+
89
+ First install the SetFit library:
90
+
91
+ ```bash
92
+ pip install setfit
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+
97
+ ```python
98
+ from setfit import SetFitModel
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SetFitModel.from_pretrained("twright8/setfit_lobbying_classifier")
102
+ # Run inference
103
+ preds = model("Growth")
104
+ ```
105
+
106
+ <!--
107
+ ### Downstream Use
108
+
109
+ *List how someone could finetune this model on their own dataset.*
110
+ -->
111
+
112
+ <!--
113
+ ### Out-of-Scope Use
114
+
115
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
116
+ -->
117
+
118
+ <!--
119
+ ## Bias, Risks and Limitations
120
+
121
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
122
+ -->
123
+
124
+ <!--
125
+ ### Recommendations
126
+
127
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
128
+ -->
129
+
130
+ ## Training Details
131
+
132
+ ### Training Set Metrics
133
+ | Training set | Min | Median | Max |
134
+ |:-------------|:----|:--------|:----|
135
+ | Word count | 1 | 39.4538 | 282 |
136
+
137
+ ### Training Hyperparameters
138
+ - batch_size: (16, 2)
139
+ - num_epochs: (4, 9)
140
+ - max_steps: -1
141
+ - sampling_strategy: undersampling
142
+ - body_learning_rate: (1.0797496673911536e-05, 3.457046714445997e-05)
143
+ - head_learning_rate: 0.0004470582121407239
144
+ - loss: CoSENTLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: True
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: True
153
+
154
+ ### Training Results
155
+ | Epoch | Step | Training Loss | Validation Loss |
156
+ |:-------:|:--------:|:-------------:|:---------------:|
157
+ | 0.0002 | 1 | 2.097 | - |
158
+ | 0.0077 | 50 | 8.5514 | - |
159
+ | 0.0155 | 100 | 3.5635 | - |
160
+ | 0.0232 | 150 | 2.9266 | - |
161
+ | 0.0310 | 200 | 2.1173 | - |
162
+ | 0.0387 | 250 | 3.1002 | - |
163
+ | 0.0465 | 300 | 3.6942 | - |
164
+ | 0.0542 | 350 | 3.4905 | - |
165
+ | 0.0620 | 400 | 4.0804 | - |
166
+ | 0.0697 | 450 | 1.6071 | - |
167
+ | 0.0774 | 500 | 2.3018 | - |
168
+ | 0.0852 | 550 | 2.3876 | - |
169
+ | 0.0929 | 600 | 0.2511 | - |
170
+ | 0.1007 | 650 | 0.2435 | - |
171
+ | 0.1084 | 700 | 2.2596 | - |
172
+ | 0.1162 | 750 | 1.121 | - |
173
+ | 0.1239 | 800 | 0.0907 | - |
174
+ | 0.1317 | 850 | 0.2172 | - |
175
+ | 0.1394 | 900 | 3.06 | - |
176
+ | 0.1471 | 950 | 0.0074 | - |
177
+ | 0.1549 | 1000 | 0.457 | - |
178
+ | 0.1626 | 1050 | 0.0575 | - |
179
+ | 0.1704 | 1100 | 0.0002 | - |
180
+ | 0.1781 | 1150 | 0.0003 | - |
181
+ | 0.1859 | 1200 | 0.0047 | - |
182
+ | 0.1936 | 1250 | 0.0004 | - |
183
+ | 0.2014 | 1300 | 0.0006 | - |
184
+ | 0.2091 | 1350 | 0.0027 | - |
185
+ | 0.2169 | 1400 | 0.0004 | - |
186
+ | 0.2246 | 1450 | 0.0009 | - |
187
+ | 0.2323 | 1500 | 0.0006 | - |
188
+ | 0.2401 | 1550 | 0.0003 | - |
189
+ | 0.2478 | 1600 | 0.0077 | - |
190
+ | 0.2556 | 1650 | 0.0004 | - |
191
+ | 0.2633 | 1700 | 0.0003 | - |
192
+ | 0.2711 | 1750 | 0.0005 | - |
193
+ | 0.2788 | 1800 | 0.0004 | - |
194
+ | 0.2866 | 1850 | 0.0007 | - |
195
+ | 0.2943 | 1900 | 0.0009 | - |
196
+ | 0.3020 | 1950 | 0.0062 | - |
197
+ | 0.3098 | 2000 | 0.0003 | - |
198
+ | 0.3175 | 2050 | 0.0001 | - |
199
+ | 0.3253 | 2100 | 0.0685 | - |
200
+ | 0.3330 | 2150 | 0.0008 | - |
201
+ | 0.3408 | 2200 | 0.0 | - |
202
+ | 0.3485 | 2250 | 0.0004 | - |
203
+ | 0.3563 | 2300 | 0.0004 | - |
204
+ | 0.3640 | 2350 | 0.0002 | - |
205
+ | 0.3717 | 2400 | 0.0001 | - |
206
+ | 0.3795 | 2450 | 0.0004 | - |
207
+ | 0.3872 | 2500 | 0.0004 | - |
208
+ | 0.3950 | 2550 | 0.0001 | - |
209
+ | 0.4027 | 2600 | 0.0001 | - |
210
+ | 0.4105 | 2650 | 0.0001 | - |
211
+ | 0.4182 | 2700 | 0.0005 | - |
212
+ | 0.4260 | 2750 | 0.0002 | - |
213
+ | 0.4337 | 2800 | 0.0001 | - |
214
+ | 0.4414 | 2850 | 0.0003 | - |
215
+ | 0.4492 | 2900 | 0.0005 | - |
216
+ | 0.4569 | 2950 | 0.0014 | - |
217
+ | 0.4647 | 3000 | 0.0001 | - |
218
+ | 0.4724 | 3050 | 0.0001 | - |
219
+ | 0.4802 | 3100 | 0.0002 | - |
220
+ | 0.4879 | 3150 | 0.0 | - |
221
+ | 0.4957 | 3200 | 0.0006 | - |
222
+ | 0.5034 | 3250 | 0.0 | - |
223
+ | 0.5112 | 3300 | 0.0 | - |
224
+ | 0.5189 | 3350 | 0.0002 | - |
225
+ | 0.5266 | 3400 | 0.0001 | - |
226
+ | 0.5344 | 3450 | 0.0006 | - |
227
+ | 0.5421 | 3500 | 0.0002 | - |
228
+ | 0.5499 | 3550 | 0.0001 | - |
229
+ | 0.5576 | 3600 | 0.0001 | - |
230
+ | 0.5654 | 3650 | 0.0001 | - |
231
+ | 0.5731 | 3700 | 0.0 | - |
232
+ | 0.5809 | 3750 | 0.0002 | - |
233
+ | 0.5886 | 3800 | 0.0 | - |
234
+ | 0.5963 | 3850 | 0.0044 | - |
235
+ | 0.6041 | 3900 | 0.0002 | - |
236
+ | 0.6118 | 3950 | 0.0001 | - |
237
+ | 0.6196 | 4000 | 0.0003 | - |
238
+ | 0.6273 | 4050 | 0.0005 | - |
239
+ | 0.6351 | 4100 | 0.0002 | - |
240
+ | 0.6428 | 4150 | 0.0 | - |
241
+ | 0.6506 | 4200 | 0.0003 | - |
242
+ | 0.6583 | 4250 | 0.0 | - |
243
+ | 0.6660 | 4300 | 0.0001 | - |
244
+ | 0.6738 | 4350 | 0.0 | - |
245
+ | 0.6815 | 4400 | 0.0008 | - |
246
+ | 0.6893 | 4450 | 0.0 | - |
247
+ | 0.6970 | 4500 | 0.0004 | - |
248
+ | 0.7048 | 4550 | 0.0001 | - |
249
+ | 0.7125 | 4600 | 0.0 | - |
250
+ | 0.7203 | 4650 | 0.0 | - |
251
+ | 0.7280 | 4700 | 0.0 | - |
252
+ | 0.7357 | 4750 | 0.0001 | - |
253
+ | 0.7435 | 4800 | 0.0001 | - |
254
+ | 0.7512 | 4850 | 0.001 | - |
255
+ | 0.7590 | 4900 | 0.0001 | - |
256
+ | 0.7667 | 4950 | 0.0 | - |
257
+ | 0.7745 | 5000 | 0.0001 | - |
258
+ | 0.7822 | 5050 | 0.0 | - |
259
+ | 0.7900 | 5100 | 0.0018 | - |
260
+ | 0.7977 | 5150 | 0.0001 | - |
261
+ | 0.8055 | 5200 | 0.0 | - |
262
+ | 0.8132 | 5250 | 0.0003 | - |
263
+ | 0.8209 | 5300 | 0.0003 | - |
264
+ | 0.8287 | 5350 | 0.0003 | - |
265
+ | 0.8364 | 5400 | 0.0001 | - |
266
+ | 0.8442 | 5450 | 0.0001 | - |
267
+ | 0.8519 | 5500 | 0.0001 | - |
268
+ | 0.8597 | 5550 | 0.0001 | - |
269
+ | 0.8674 | 5600 | 0.0001 | - |
270
+ | 0.8752 | 5650 | 0.0 | - |
271
+ | 0.8829 | 5700 | 0.0003 | - |
272
+ | 0.8906 | 5750 | 0.0003 | - |
273
+ | 0.8984 | 5800 | 0.0001 | - |
274
+ | 0.9061 | 5850 | 0.0001 | - |
275
+ | 0.9139 | 5900 | 0.0002 | - |
276
+ | 0.9216 | 5950 | 0.0 | - |
277
+ | 0.9294 | 6000 | 0.0001 | - |
278
+ | 0.9371 | 6050 | 0.0 | - |
279
+ | 0.9449 | 6100 | 0.0 | - |
280
+ | 0.9526 | 6150 | 0.0001 | - |
281
+ | 0.9603 | 6200 | 0.0 | - |
282
+ | 0.9681 | 6250 | 0.0001 | - |
283
+ | 0.9758 | 6300 | 0.0002 | - |
284
+ | 0.9836 | 6350 | 0.0 | - |
285
+ | 0.9913 | 6400 | 0.0 | - |
286
+ | 0.9991 | 6450 | 0.0002 | - |
287
+ | **1.0** | **6456** | **-** | **1.3837** |
288
+ | 1.0068 | 6500 | 0.0001 | - |
289
+ | 1.0146 | 6550 | 0.0001 | - |
290
+ | 1.0223 | 6600 | 0.0002 | - |
291
+ | 1.0300 | 6650 | 0.0001 | - |
292
+ | 1.0378 | 6700 | 0.0005 | - |
293
+ | 1.0455 | 6750 | 0.0001 | - |
294
+ | 1.0533 | 6800 | 0.0001 | - |
295
+ | 1.0610 | 6850 | 0.0 | - |
296
+ | 1.0688 | 6900 | 0.0 | - |
297
+ | 1.0765 | 6950 | 0.0009 | - |
298
+ | 1.0843 | 7000 | 0.0 | - |
299
+ | 1.0920 | 7050 | 0.0032 | - |
300
+ | 1.0998 | 7100 | 0.0001 | - |
301
+ | 1.1075 | 7150 | 0.0001 | - |
302
+ | 1.1152 | 7200 | 0.0001 | - |
303
+ | 1.1230 | 7250 | 0.0 | - |
304
+ | 1.1307 | 7300 | 0.0001 | - |
305
+ | 1.1385 | 7350 | 0.0 | - |
306
+ | 1.1462 | 7400 | 0.0 | - |
307
+ | 1.1540 | 7450 | 0.0002 | - |
308
+ | 1.1617 | 7500 | 0.0 | - |
309
+ | 1.1695 | 7550 | 0.0427 | - |
310
+ | 1.1772 | 7600 | 0.0 | - |
311
+ | 1.1849 | 7650 | 0.0 | - |
312
+ | 1.1927 | 7700 | 0.0 | - |
313
+ | 1.2004 | 7750 | 0.0002 | - |
314
+ | 1.2082 | 7800 | 0.0 | - |
315
+ | 1.2159 | 7850 | 0.0 | - |
316
+ | 1.2237 | 7900 | 0.0 | - |
317
+ | 1.2314 | 7950 | 0.0 | - |
318
+ | 1.2392 | 8000 | 0.0001 | - |
319
+ | 1.2469 | 8050 | 0.0 | - |
320
+ | 1.2546 | 8100 | 0.0001 | - |
321
+ | 1.2624 | 8150 | 0.0 | - |
322
+ | 1.2701 | 8200 | 0.0 | - |
323
+ | 1.2779 | 8250 | 0.0 | - |
324
+ | 1.2856 | 8300 | 0.0 | - |
325
+ | 1.2934 | 8350 | 0.0 | - |
326
+ | 1.3011 | 8400 | 0.0 | - |
327
+ | 1.3089 | 8450 | 0.0 | - |
328
+ | 1.3166 | 8500 | 0.0 | - |
329
+ | 1.3243 | 8550 | 0.0001 | - |
330
+ | 1.3321 | 8600 | 0.0 | - |
331
+ | 1.3398 | 8650 | 0.0002 | - |
332
+ | 1.3476 | 8700 | 0.0 | - |
333
+ | 1.3553 | 8750 | 0.0006 | - |
334
+ | 1.3631 | 8800 | 0.0 | - |
335
+ | 1.3708 | 8850 | 0.0 | - |
336
+ | 1.3786 | 8900 | 0.0001 | - |
337
+ | 1.3863 | 8950 | 0.0 | - |
338
+ | 1.3941 | 9000 | 0.0001 | - |
339
+ | 1.4018 | 9050 | 0.0 | - |
340
+ | 1.4095 | 9100 | 0.0002 | - |
341
+ | 1.4173 | 9150 | 0.0 | - |
342
+ | 1.4250 | 9200 | 0.0 | - |
343
+ | 1.4328 | 9250 | 0.0 | - |
344
+ | 1.4405 | 9300 | 0.0 | - |
345
+ | 1.4483 | 9350 | 0.0 | - |
346
+ | 1.4560 | 9400 | 0.0 | - |
347
+ | 1.4638 | 9450 | 0.0 | - |
348
+ | 1.4715 | 9500 | 0.0 | - |
349
+ | 1.4792 | 9550 | 0.0 | - |
350
+ | 1.4870 | 9600 | 0.0 | - |
351
+ | 1.4947 | 9650 | 0.0005 | - |
352
+ | 1.5025 | 9700 | 0.0 | - |
353
+ | 1.5102 | 9750 | 0.0001 | - |
354
+ | 1.5180 | 9800 | 0.0001 | - |
355
+ | 1.5257 | 9850 | 0.0001 | - |
356
+ | 1.5335 | 9900 | 0.0 | - |
357
+ | 1.5412 | 9950 | 0.0 | - |
358
+ | 1.5489 | 10000 | 0.0 | - |
359
+ | 1.5567 | 10050 | 0.0 | - |
360
+ | 1.5644 | 10100 | 0.0001 | - |
361
+ | 1.5722 | 10150 | 0.0 | - |
362
+ | 1.5799 | 10200 | 0.0002 | - |
363
+ | 1.5877 | 10250 | 0.0001 | - |
364
+ | 1.5954 | 10300 | 0.0005 | - |
365
+ | 1.6032 | 10350 | 0.0 | - |
366
+ | 1.6109 | 10400 | 0.0 | - |
367
+ | 1.6186 | 10450 | 0.0003 | - |
368
+ | 1.6264 | 10500 | 0.0002 | - |
369
+ | 1.6341 | 10550 | 0.0 | - |
370
+ | 1.6419 | 10600 | 0.0 | - |
371
+ | 1.6496 | 10650 | 0.0001 | - |
372
+ | 1.6574 | 10700 | 0.0002 | - |
373
+ | 1.6651 | 10750 | 0.0002 | - |
374
+ | 1.6729 | 10800 | 0.0054 | - |
375
+ | 1.6806 | 10850 | 0.0005 | - |
376
+ | 1.6884 | 10900 | 0.0001 | - |
377
+ | 1.6961 | 10950 | 0.0 | - |
378
+ | 1.7038 | 11000 | 0.0 | - |
379
+ | 1.7116 | 11050 | 0.0001 | - |
380
+ | 1.7193 | 11100 | 0.0001 | - |
381
+ | 1.7271 | 11150 | 0.0 | - |
382
+ | 1.7348 | 11200 | 0.0001 | - |
383
+ | 1.7426 | 11250 | 0.0 | - |
384
+ | 1.7503 | 11300 | 0.0001 | - |
385
+ | 1.7581 | 11350 | 0.0004 | - |
386
+ | 1.7658 | 11400 | 0.0 | - |
387
+ | 1.7735 | 11450 | 0.0001 | - |
388
+ | 1.7813 | 11500 | 0.0 | - |
389
+ | 1.7890 | 11550 | 0.0 | - |
390
+ | 1.7968 | 11600 | 0.0 | - |
391
+ | 1.8045 | 11650 | 0.0 | - |
392
+ | 1.8123 | 11700 | 0.0001 | - |
393
+ | 1.8200 | 11750 | 0.0002 | - |
394
+ | 1.8278 | 11800 | 0.0 | - |
395
+ | 1.8355 | 11850 | 0.0001 | - |
396
+ | 1.8432 | 11900 | 0.0 | - |
397
+ | 1.8510 | 11950 | 0.0001 | - |
398
+ | 1.8587 | 12000 | 0.0 | - |
399
+ | 1.8665 | 12050 | 0.0 | - |
400
+ | 1.8742 | 12100 | 0.0 | - |
401
+ | 1.8820 | 12150 | 0.0001 | - |
402
+ | 1.8897 | 12200 | 0.0 | - |
403
+ | 1.8975 | 12250 | 0.0 | - |
404
+ | 1.9052 | 12300 | 0.0 | - |
405
+ | 1.9129 | 12350 | 0.0 | - |
406
+ | 1.9207 | 12400 | 0.0 | - |
407
+ | 1.9284 | 12450 | 0.0 | - |
408
+ | 1.9362 | 12500 | 0.0 | - |
409
+ | 1.9439 | 12550 | 0.0003 | - |
410
+ | 1.9517 | 12600 | 0.0001 | - |
411
+ | 1.9594 | 12650 | 0.0 | - |
412
+ | 1.9672 | 12700 | 0.0001 | - |
413
+ | 1.9749 | 12750 | 0.0 | - |
414
+ | 1.9827 | 12800 | 0.0 | - |
415
+ | 1.9904 | 12850 | 0.0 | - |
416
+ | 1.9981 | 12900 | 0.0001 | - |
417
+ | 2.0 | 12912 | - | 2.611 |
418
+ | 2.0059 | 12950 | 0.0 | - |
419
+ | 2.0136 | 13000 | 0.0001 | - |
420
+ | 2.0214 | 13050 | 0.0001 | - |
421
+ | 2.0291 | 13100 | 0.0 | - |
422
+ | 2.0369 | 13150 | 0.0 | - |
423
+ | 2.0446 | 13200 | 0.0001 | - |
424
+ | 2.0524 | 13250 | 0.0 | - |
425
+ | 2.0601 | 13300 | 0.0002 | - |
426
+ | 2.0678 | 13350 | 0.0 | - |
427
+ | 2.0756 | 13400 | 0.0 | - |
428
+ | 2.0833 | 13450 | 0.0001 | - |
429
+ | 2.0911 | 13500 | 0.0001 | - |
430
+ | 2.0988 | 13550 | 0.0003 | - |
431
+ | 2.1066 | 13600 | 0.0 | - |
432
+ | 2.1143 | 13650 | 0.0001 | - |
433
+ | 2.1221 | 13700 | 0.0001 | - |
434
+ | 2.1298 | 13750 | 0.0001 | - |
435
+ | 2.1375 | 13800 | 0.0001 | - |
436
+ | 2.1453 | 13850 | 0.0 | - |
437
+ | 2.1530 | 13900 | 0.0 | - |
438
+ | 2.1608 | 13950 | 0.0 | - |
439
+ | 2.1685 | 14000 | 0.0 | - |
440
+ | 2.1763 | 14050 | 0.0 | - |
441
+ | 2.1840 | 14100 | 0.0001 | - |
442
+ | 2.1918 | 14150 | 0.0 | - |
443
+ | 2.1995 | 14200 | 0.0 | - |
444
+ | 2.2072 | 14250 | 0.0001 | - |
445
+ | 2.2150 | 14300 | 0.0 | - |
446
+ | 2.2227 | 14350 | 0.0 | - |
447
+ | 2.2305 | 14400 | 0.0004 | - |
448
+ | 2.2382 | 14450 | 0.0001 | - |
449
+ | 2.2460 | 14500 | 0.0 | - |
450
+ | 2.2537 | 14550 | 0.0003 | - |
451
+ | 2.2615 | 14600 | 0.0 | - |
452
+ | 2.2692 | 14650 | 0.0001 | - |
453
+ | 2.2770 | 14700 | 0.0001 | - |
454
+ | 2.2847 | 14750 | 0.0 | - |
455
+ | 2.2924 | 14800 | 0.0 | - |
456
+ | 2.3002 | 14850 | 0.0005 | - |
457
+ | 2.3079 | 14900 | 0.0 | - |
458
+ | 2.3157 | 14950 | 0.0002 | - |
459
+ | 2.3234 | 15000 | 0.0 | - |
460
+ | 2.3312 | 15050 | 0.0 | - |
461
+ | 2.3389 | 15100 | 0.0001 | - |
462
+ | 2.3467 | 15150 | 0.0001 | - |
463
+ | 2.3544 | 15200 | 0.0002 | - |
464
+ | 2.3621 | 15250 | 0.0001 | - |
465
+ | 2.3699 | 15300 | 0.0 | - |
466
+ | 2.3776 | 15350 | 0.0 | - |
467
+ | 2.3854 | 15400 | 0.0002 | - |
468
+ | 2.3931 | 15450 | 0.0003 | - |
469
+ | 2.4009 | 15500 | 0.0 | - |
470
+ | 2.4086 | 15550 | 0.0 | - |
471
+ | 2.4164 | 15600 | 0.0 | - |
472
+ | 2.4241 | 15650 | 0.0001 | - |
473
+ | 2.4318 | 15700 | 0.0 | - |
474
+ | 2.4396 | 15750 | 0.0 | - |
475
+ | 2.4473 | 15800 | 0.0002 | - |
476
+ | 2.4551 | 15850 | 0.0 | - |
477
+ | 2.4628 | 15900 | 0.0 | - |
478
+ | 2.4706 | 15950 | 0.0 | - |
479
+ | 2.4783 | 16000 | 0.0 | - |
480
+ | 2.4861 | 16050 | 0.0001 | - |
481
+ | 2.4938 | 16100 | 0.0 | - |
482
+ | 2.5015 | 16150 | 0.0 | - |
483
+ | 2.5093 | 16200 | 0.0 | - |
484
+ | 2.5170 | 16250 | 0.0 | - |
485
+ | 2.5248 | 16300 | 0.0 | - |
486
+ | 2.5325 | 16350 | 0.0 | - |
487
+ | 2.5403 | 16400 | 0.0 | - |
488
+ | 2.5480 | 16450 | 0.0 | - |
489
+ | 2.5558 | 16500 | 0.0 | - |
490
+ | 2.5635 | 16550 | 0.0001 | - |
491
+ | 2.5713 | 16600 | 0.0 | - |
492
+ | 2.5790 | 16650 | 0.0 | - |
493
+ | 2.5867 | 16700 | 0.0 | - |
494
+ | 2.5945 | 16750 | 0.0 | - |
495
+ | 2.6022 | 16800 | 0.0009 | - |
496
+ | 2.6100 | 16850 | 0.0001 | - |
497
+ | 2.6177 | 16900 | 0.0 | - |
498
+ | 2.6255 | 16950 | 0.0001 | - |
499
+ | 2.6332 | 17000 | 0.0 | - |
500
+ | 2.6410 | 17050 | 0.0 | - |
501
+ | 2.6487 | 17100 | 0.0001 | - |
502
+ | 2.6564 | 17150 | 0.0 | - |
503
+ | 2.6642 | 17200 | 0.0 | - |
504
+ | 2.6719 | 17250 | 0.0 | - |
505
+ | 2.6797 | 17300 | 0.0 | - |
506
+ | 2.6874 | 17350 | 0.0004 | - |
507
+ | 2.6952 | 17400 | 0.0 | - |
508
+ | 2.7029 | 17450 | 0.0 | - |
509
+ | 2.7107 | 17500 | 0.0 | - |
510
+ | 2.7184 | 17550 | 0.0 | - |
511
+ | 2.7261 | 17600 | 0.0 | - |
512
+ | 2.7339 | 17650 | 0.0 | - |
513
+ | 2.7416 | 17700 | 0.0001 | - |
514
+ | 2.7494 | 17750 | 0.0 | - |
515
+ | 2.7571 | 17800 | 0.0 | - |
516
+ | 2.7649 | 17850 | 0.0001 | - |
517
+ | 2.7726 | 17900 | 0.0 | - |
518
+ | 2.7804 | 17950 | 0.0001 | - |
519
+ | 2.7881 | 18000 | 0.0001 | - |
520
+ | 2.7958 | 18050 | 0.0 | - |
521
+ | 2.8036 | 18100 | 0.0 | - |
522
+ | 2.8113 | 18150 | 0.0 | - |
523
+ | 2.8191 | 18200 | 0.0 | - |
524
+ | 2.8268 | 18250 | 0.0 | - |
525
+ | 2.8346 | 18300 | 0.0001 | - |
526
+ | 2.8423 | 18350 | 0.0 | - |
527
+ | 2.8501 | 18400 | 0.0 | - |
528
+ | 2.8578 | 18450 | 0.0 | - |
529
+ | 2.8656 | 18500 | 0.0 | - |
530
+ | 2.8733 | 18550 | 0.0 | - |
531
+ | 2.8810 | 18600 | 0.0 | - |
532
+ | 2.8888 | 18650 | 0.0 | - |
533
+ | 2.8965 | 18700 | 0.0 | - |
534
+ | 2.9043 | 18750 | 0.0 | - |
535
+ | 2.9120 | 18800 | 0.0001 | - |
536
+ | 2.9198 | 18850 | 0.0 | - |
537
+ | 2.9275 | 18900 | 0.0 | - |
538
+ | 2.9353 | 18950 | 0.0 | - |
539
+ | 2.9430 | 19000 | 0.0 | - |
540
+ | 2.9507 | 19050 | 0.0 | - |
541
+ | 2.9585 | 19100 | 0.0 | - |
542
+ | 2.9662 | 19150 | 0.0 | - |
543
+ | 2.9740 | 19200 | 0.0 | - |
544
+ | 2.9817 | 19250 | 0.0003 | - |
545
+ | 2.9895 | 19300 | 0.0001 | - |
546
+ | 2.9972 | 19350 | 0.0 | - |
547
+ | 3.0 | 19368 | - | 2.0845 |
548
+ | 3.0050 | 19400 | 0.0 | - |
549
+ | 3.0127 | 19450 | 0.0001 | - |
550
+ | 3.0204 | 19500 | 0.0 | - |
551
+ | 3.0282 | 19550 | 0.0 | - |
552
+ | 3.0359 | 19600 | 0.0 | - |
553
+ | 3.0437 | 19650 | 0.0 | - |
554
+ | 3.0514 | 19700 | 0.0 | - |
555
+ | 3.0592 | 19750 | 0.0 | - |
556
+ | 3.0669 | 19800 | 0.0001 | - |
557
+ | 3.0747 | 19850 | 0.0 | - |
558
+ | 3.0824 | 19900 | 0.0 | - |
559
+ | 3.0901 | 19950 | 0.0001 | - |
560
+ | 3.0979 | 20000 | 0.0 | - |
561
+ | 3.1056 | 20050 | 0.0 | - |
562
+ | 3.1134 | 20100 | 0.0 | - |
563
+ | 3.1211 | 20150 | 0.0001 | - |
564
+ | 3.1289 | 20200 | 0.0 | - |
565
+ | 3.1366 | 20250 | 0.0 | - |
566
+ | 3.1444 | 20300 | 0.0 | - |
567
+ | 3.1521 | 20350 | 0.0 | - |
568
+ | 3.1599 | 20400 | 0.0 | - |
569
+ | 3.1676 | 20450 | 0.0001 | - |
570
+ | 3.1753 | 20500 | 0.0 | - |
571
+ | 3.1831 | 20550 | 0.0001 | - |
572
+ | 3.1908 | 20600 | 0.0 | - |
573
+ | 3.1986 | 20650 | 0.0 | - |
574
+ | 3.2063 | 20700 | 0.0 | - |
575
+ | 3.2141 | 20750 | 0.0 | - |
576
+ | 3.2218 | 20800 | 0.0 | - |
577
+ | 3.2296 | 20850 | 0.0003 | - |
578
+ | 3.2373 | 20900 | 0.0 | - |
579
+ | 3.2450 | 20950 | 0.0 | - |
580
+ | 3.2528 | 21000 | 0.0 | - |
581
+ | 3.2605 | 21050 | 0.0 | - |
582
+ | 3.2683 | 21100 | 0.0001 | - |
583
+ | 3.2760 | 21150 | 0.0001 | - |
584
+ | 3.2838 | 21200 | 0.0 | - |
585
+ | 3.2915 | 21250 | 0.0 | - |
586
+ | 3.2993 | 21300 | 0.0 | - |
587
+ | 3.3070 | 21350 | 0.0 | - |
588
+ | 3.3147 | 21400 | 0.0 | - |
589
+ | 3.3225 | 21450 | 0.0001 | - |
590
+ | 3.3302 | 21500 | 0.0 | - |
591
+ | 3.3380 | 21550 | 0.0 | - |
592
+ | 3.3457 | 21600 | 0.0 | - |
593
+ | 3.3535 | 21650 | 0.0 | - |
594
+ | 3.3612 | 21700 | 0.0 | - |
595
+ | 3.3690 | 21750 | 0.0 | - |
596
+ | 3.3767 | 21800 | 0.0 | - |
597
+ | 3.3844 | 21850 | 0.0 | - |
598
+ | 3.3922 | 21900 | 0.0001 | - |
599
+ | 3.3999 | 21950 | 0.0 | - |
600
+ | 3.4077 | 22000 | 0.0 | - |
601
+ | 3.4154 | 22050 | 0.0001 | - |
602
+ | 3.4232 | 22100 | 0.0 | - |
603
+ | 3.4309 | 22150 | 0.0001 | - |
604
+ | 3.4387 | 22200 | 0.0 | - |
605
+ | 3.4464 | 22250 | 0.0 | - |
606
+ | 3.4542 | 22300 | 0.0 | - |
607
+ | 3.4619 | 22350 | 0.0001 | - |
608
+ | 3.4696 | 22400 | 0.0 | - |
609
+ | 3.4774 | 22450 | 0.0 | - |
610
+ | 3.4851 | 22500 | 0.0 | - |
611
+ | 3.4929 | 22550 | 0.0001 | - |
612
+ | 3.5006 | 22600 | 0.0002 | - |
613
+ | 3.5084 | 22650 | 0.0001 | - |
614
+ | 3.5161 | 22700 | 0.0 | - |
615
+ | 3.5239 | 22750 | 0.0001 | - |
616
+ | 3.5316 | 22800 | 0.0 | - |
617
+ | 3.5393 | 22850 | 0.0 | - |
618
+ | 3.5471 | 22900 | 0.0001 | - |
619
+ | 3.5548 | 22950 | 0.0 | - |
620
+ | 3.5626 | 23000 | 0.0 | - |
621
+ | 3.5703 | 23050 | 0.0 | - |
622
+ | 3.5781 | 23100 | 0.0 | - |
623
+ | 3.5858 | 23150 | 0.0001 | - |
624
+ | 3.5936 | 23200 | 0.0 | - |
625
+ | 3.6013 | 23250 | 0.0001 | - |
626
+ | 3.6090 | 23300 | 0.0001 | - |
627
+ | 3.6168 | 23350 | 0.0 | - |
628
+ | 3.6245 | 23400 | 0.0003 | - |
629
+ | 3.6323 | 23450 | 0.0 | - |
630
+ | 3.6400 | 23500 | 0.0 | - |
631
+ | 3.6478 | 23550 | 0.0001 | - |
632
+ | 3.6555 | 23600 | 0.0 | - |
633
+ | 3.6633 | 23650 | 0.0 | - |
634
+ | 3.6710 | 23700 | 0.0 | - |
635
+ | 3.6787 | 23750 | 0.0001 | - |
636
+ | 3.6865 | 23800 | 0.0 | - |
637
+ | 3.6942 | 23850 | 0.0001 | - |
638
+ | 3.7020 | 23900 | 0.0002 | - |
639
+ | 3.7097 | 23950 | 0.0 | - |
640
+ | 3.7175 | 24000 | 0.0 | - |
641
+ | 3.7252 | 24050 | 0.0 | - |
642
+ | 3.7330 | 24100 | 0.0 | - |
643
+ | 3.7407 | 24150 | 0.0001 | - |
644
+ | 3.7485 | 24200 | 0.0 | - |
645
+ | 3.7562 | 24250 | 0.0 | - |
646
+ | 3.7639 | 24300 | 0.0 | - |
647
+ | 3.7717 | 24350 | 0.0 | - |
648
+ | 3.7794 | 24400 | 0.0 | - |
649
+ | 3.7872 | 24450 | 0.0 | - |
650
+ | 3.7949 | 24500 | 0.0001 | - |
651
+ | 3.8027 | 24550 | 0.0001 | - |
652
+ | 3.8104 | 24600 | 0.0 | - |
653
+ | 3.8182 | 24650 | 0.0 | - |
654
+ | 3.8259 | 24700 | 0.0 | - |
655
+ | 3.8336 | 24750 | 0.0 | - |
656
+ | 3.8414 | 24800 | 0.0001 | - |
657
+ | 3.8491 | 24850 | 0.0 | - |
658
+ | 3.8569 | 24900 | 0.0 | - |
659
+ | 3.8646 | 24950 | 0.0 | - |
660
+ | 3.8724 | 25000 | 0.0 | - |
661
+ | 3.8801 | 25050 | 0.0 | - |
662
+ | 3.8879 | 25100 | 0.0 | - |
663
+ | 3.8956 | 25150 | 0.0001 | - |
664
+ | 3.9033 | 25200 | 0.0 | - |
665
+ | 3.9111 | 25250 | 0.0002 | - |
666
+ | 3.9188 | 25300 | 0.0001 | - |
667
+ | 3.9266 | 25350 | 0.0 | - |
668
+ | 3.9343 | 25400 | 0.0 | - |
669
+ | 3.9421 | 25450 | 0.0 | - |
670
+ | 3.9498 | 25500 | 0.0001 | - |
671
+ | 3.9576 | 25550 | 0.0 | - |
672
+ | 3.9653 | 25600 | 0.0 | - |
673
+ | 3.9730 | 25650 | 0.0001 | - |
674
+ | 3.9808 | 25700 | 0.0 | - |
675
+ | 3.9885 | 25750 | 0.0 | - |
676
+ | 3.9963 | 25800 | 0.0 | - |
677
+ | 4.0 | 25824 | - | 2.3576 |
678
+
679
+ * The bold row denotes the saved checkpoint.
680
+ ### Framework Versions
681
+ - Python: 3.10.12
682
+ - SetFit: 1.0.3
683
+ - Sentence Transformers: 3.0.1
684
+ - Transformers: 4.39.0
685
+ - PyTorch: 2.3.0+cu121
686
+ - Datasets: 2.20.0
687
+ - Tokenizers: 0.15.2
688
+
689
+ ## Citation
690
+
691
+ ### BibTeX
692
+ ```bibtex
693
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
694
+ doi = {10.48550/ARXIV.2209.11055},
695
+ url = {https://arxiv.org/abs/2209.11055},
696
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
697
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
698
+ title = {Efficient Few-Shot Learning Without Prompts},
699
+ publisher = {arXiv},
700
+ year = {2022},
701
+ copyright = {Creative Commons Attribution 4.0 International}
702
+ }
703
+ ```
704
+
705
+ <!--
706
+ ## Glossary
707
+
708
+ *Clearly define terms in order to be accessible across audiences.*
709
+ -->
710
+
711
+ <!--
712
+ ## Model Card Authors
713
+
714
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
715
+ -->
716
+
717
+ <!--
718
+ ## Model Card Contact
719
+
720
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
721
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_6456",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.39.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b311c28ad1eb2ca69dbd902051060f08a5a933db4cb7cba41a565630d6ed6b9
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e02f9dc457f58e786c76960ab24a128037d22d1ce8a7ac3ac10c3187dc1422a
3
+ size 13854
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff