twadada commited on
Commit
5db8221
·
verified ·
1 Parent(s): a69a131

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2599 -0
README.md ADDED
@@ -0,0 +1,2599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: mpnet_main_noabtt
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: None
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 68.01492537313432
18
+ - type: ap
19
+ value: 29.926088215432827
20
+ - type: f1
21
+ value: 61.543829186658314
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: None
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 66.03607500000001
33
+ - type: ap
34
+ value: 60.89551858560106
35
+ - type: f1
36
+ value: 65.80068648160709
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: None
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 34.78199999999999
48
+ - type: f1
49
+ value: 34.250938954862356
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: None
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 21.266
61
+ - type: map_at_10
62
+ value: 35.196
63
+ - type: map_at_100
64
+ value: 36.387
65
+ - type: map_at_1000
66
+ value: 36.416
67
+ - type: map_at_3
68
+ value: 30.773
69
+ - type: map_at_5
70
+ value: 33.163
71
+ - type: mrr_at_1
72
+ value: 22.048000000000002
73
+ - type: mrr_at_10
74
+ value: 35.481
75
+ - type: mrr_at_100
76
+ value: 36.665
77
+ - type: mrr_at_1000
78
+ value: 36.693999999999996
79
+ - type: mrr_at_3
80
+ value: 31.069000000000003
81
+ - type: mrr_at_5
82
+ value: 33.455
83
+ - type: ndcg_at_1
84
+ value: 21.266
85
+ - type: ndcg_at_10
86
+ value: 43.114000000000004
87
+ - type: ndcg_at_100
88
+ value: 48.61
89
+ - type: ndcg_at_1000
90
+ value: 49.334
91
+ - type: ndcg_at_3
92
+ value: 33.951
93
+ - type: ndcg_at_5
94
+ value: 38.257999999999996
95
+ - type: precision_at_1
96
+ value: 21.266
97
+ - type: precision_at_10
98
+ value: 6.848999999999999
99
+ - type: precision_at_100
100
+ value: 0.935
101
+ - type: precision_at_1000
102
+ value: 0.099
103
+ - type: precision_at_3
104
+ value: 14.391000000000002
105
+ - type: precision_at_5
106
+ value: 10.725
107
+ - type: recall_at_1
108
+ value: 21.266
109
+ - type: recall_at_10
110
+ value: 68.49199999999999
111
+ - type: recall_at_100
112
+ value: 93.528
113
+ - type: recall_at_1000
114
+ value: 99.14699999999999
115
+ - type: recall_at_3
116
+ value: 43.172
117
+ - type: recall_at_5
118
+ value: 53.627
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: None
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 36.01511495124908
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: None
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 26.77906639415867
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: None
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 54.32809895348082
152
+ - type: mrr
153
+ value: 68.93109967902211
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: None
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 78.61413947741643
165
+ - type: cos_sim_spearman
166
+ value: 75.72702669649405
167
+ - type: euclidean_pearson
168
+ value: 77.72961558201939
169
+ - type: euclidean_spearman
170
+ value: 75.72702669649405
171
+ - type: manhattan_pearson
172
+ value: 78.63299657922013
173
+ - type: manhattan_spearman
174
+ value: 77.19874697762698
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: None
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 72.92857142857143
186
+ - type: f1
187
+ value: 72.1661081571387
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: None
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 33.19795849293594
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: None
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 25.13940168273952
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: None
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 22.384999999999998
221
+ - type: map_at_10
222
+ value: 29.628
223
+ - type: map_at_100
224
+ value: 30.781
225
+ - type: map_at_1000
226
+ value: 30.933
227
+ - type: map_at_3
228
+ value: 26.889000000000003
229
+ - type: map_at_5
230
+ value: 28.388999999999996
231
+ - type: mrr_at_1
232
+ value: 28.183000000000003
233
+ - type: mrr_at_10
234
+ value: 34.952
235
+ - type: mrr_at_100
236
+ value: 35.774
237
+ - type: mrr_at_1000
238
+ value: 35.843
239
+ - type: mrr_at_3
240
+ value: 32.499
241
+ - type: mrr_at_5
242
+ value: 33.829
243
+ - type: ndcg_at_1
244
+ value: 28.183000000000003
245
+ - type: ndcg_at_10
246
+ value: 34.614
247
+ - type: ndcg_at_100
248
+ value: 39.737
249
+ - type: ndcg_at_1000
250
+ value: 42.742999999999995
251
+ - type: ndcg_at_3
252
+ value: 30.328
253
+ - type: ndcg_at_5
254
+ value: 32.23
255
+ - type: precision_at_1
256
+ value: 28.183000000000003
257
+ - type: precision_at_10
258
+ value: 6.723999999999999
259
+ - type: precision_at_100
260
+ value: 1.172
261
+ - type: precision_at_1000
262
+ value: 0.181
263
+ - type: precision_at_3
264
+ value: 14.402000000000001
265
+ - type: precision_at_5
266
+ value: 10.587
267
+ - type: recall_at_1
268
+ value: 22.384999999999998
269
+ - type: recall_at_10
270
+ value: 43.537
271
+ - type: recall_at_100
272
+ value: 66.37100000000001
273
+ - type: recall_at_1000
274
+ value: 86.978
275
+ - type: recall_at_3
276
+ value: 30.874000000000002
277
+ - type: recall_at_5
278
+ value: 36.358000000000004
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: None
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 15.145
290
+ - type: map_at_10
291
+ value: 20.992
292
+ - type: map_at_100
293
+ value: 21.951999999999998
294
+ - type: map_at_1000
295
+ value: 22.076999999999998
296
+ - type: map_at_3
297
+ value: 19.211
298
+ - type: map_at_5
299
+ value: 20.233999999999998
300
+ - type: mrr_at_1
301
+ value: 19.363
302
+ - type: mrr_at_10
303
+ value: 24.97
304
+ - type: mrr_at_100
305
+ value: 25.818
306
+ - type: mrr_at_1000
307
+ value: 25.895000000000003
308
+ - type: mrr_at_3
309
+ value: 23.238
310
+ - type: mrr_at_5
311
+ value: 24.288999999999998
312
+ - type: ndcg_at_1
313
+ value: 19.363
314
+ - type: ndcg_at_10
315
+ value: 24.665
316
+ - type: ndcg_at_100
317
+ value: 29.122999999999998
318
+ - type: ndcg_at_1000
319
+ value: 32.06
320
+ - type: ndcg_at_3
321
+ value: 21.729000000000003
322
+ - type: ndcg_at_5
323
+ value: 23.148
324
+ - type: precision_at_1
325
+ value: 19.363
326
+ - type: precision_at_10
327
+ value: 4.643
328
+ - type: precision_at_100
329
+ value: 0.864
330
+ - type: precision_at_1000
331
+ value: 0.13699999999999998
332
+ - type: precision_at_3
333
+ value: 10.51
334
+ - type: precision_at_5
335
+ value: 7.617999999999999
336
+ - type: recall_at_1
337
+ value: 15.145
338
+ - type: recall_at_10
339
+ value: 31.653
340
+ - type: recall_at_100
341
+ value: 51.344
342
+ - type: recall_at_1000
343
+ value: 71.352
344
+ - type: recall_at_3
345
+ value: 22.892000000000003
346
+ - type: recall_at_5
347
+ value: 26.878999999999998
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: None
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 24.68
359
+ - type: map_at_10
360
+ value: 33.0
361
+ - type: map_at_100
362
+ value: 34.095
363
+ - type: map_at_1000
364
+ value: 34.193
365
+ - type: map_at_3
366
+ value: 30.444
367
+ - type: map_at_5
368
+ value: 31.691999999999997
369
+ - type: mrr_at_1
370
+ value: 28.527
371
+ - type: mrr_at_10
372
+ value: 36.162
373
+ - type: mrr_at_100
374
+ value: 37.064
375
+ - type: mrr_at_1000
376
+ value: 37.124
377
+ - type: mrr_at_3
378
+ value: 33.866
379
+ - type: mrr_at_5
380
+ value: 35.026
381
+ - type: ndcg_at_1
382
+ value: 28.527
383
+ - type: ndcg_at_10
384
+ value: 37.893
385
+ - type: ndcg_at_100
386
+ value: 43.082
387
+ - type: ndcg_at_1000
388
+ value: 45.366
389
+ - type: ndcg_at_3
390
+ value: 33.062000000000005
391
+ - type: ndcg_at_5
392
+ value: 35.007
393
+ - type: precision_at_1
394
+ value: 28.527
395
+ - type: precision_at_10
396
+ value: 6.276
397
+ - type: precision_at_100
398
+ value: 0.966
399
+ - type: precision_at_1000
400
+ value: 0.125
401
+ - type: precision_at_3
402
+ value: 14.879999999999999
403
+ - type: precision_at_5
404
+ value: 10.206999999999999
405
+ - type: recall_at_1
406
+ value: 24.68
407
+ - type: recall_at_10
408
+ value: 49.8
409
+ - type: recall_at_100
410
+ value: 73.27900000000001
411
+ - type: recall_at_1000
412
+ value: 89.761
413
+ - type: recall_at_3
414
+ value: 36.428
415
+ - type: recall_at_5
416
+ value: 41.284
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: None
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 12.674
428
+ - type: map_at_10
429
+ value: 17.466
430
+ - type: map_at_100
431
+ value: 18.309
432
+ - type: map_at_1000
433
+ value: 18.415
434
+ - type: map_at_3
435
+ value: 16.072
436
+ - type: map_at_5
437
+ value: 16.835
438
+ - type: mrr_at_1
439
+ value: 13.672
440
+ - type: mrr_at_10
441
+ value: 18.602
442
+ - type: mrr_at_100
443
+ value: 19.434
444
+ - type: mrr_at_1000
445
+ value: 19.526
446
+ - type: mrr_at_3
447
+ value: 17.213
448
+ - type: mrr_at_5
449
+ value: 17.942
450
+ - type: ndcg_at_1
451
+ value: 13.672
452
+ - type: ndcg_at_10
453
+ value: 20.339
454
+ - type: ndcg_at_100
455
+ value: 24.979000000000003
456
+ - type: ndcg_at_1000
457
+ value: 28.186
458
+ - type: ndcg_at_3
459
+ value: 17.5
460
+ - type: ndcg_at_5
461
+ value: 18.791
462
+ - type: precision_at_1
463
+ value: 13.672
464
+ - type: precision_at_10
465
+ value: 3.209
466
+ - type: precision_at_100
467
+ value: 0.5890000000000001
468
+ - type: precision_at_1000
469
+ value: 0.091
470
+ - type: precision_at_3
471
+ value: 7.571
472
+ - type: precision_at_5
473
+ value: 5.311
474
+ - type: recall_at_1
475
+ value: 12.674
476
+ - type: recall_at_10
477
+ value: 28.096
478
+ - type: recall_at_100
479
+ value: 50.444
480
+ - type: recall_at_1000
481
+ value: 75.581
482
+ - type: recall_at_3
483
+ value: 20.330000000000002
484
+ - type: recall_at_5
485
+ value: 23.384
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: None
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 6.537
497
+ - type: map_at_10
498
+ value: 9.889000000000001
499
+ - type: map_at_100
500
+ value: 10.775
501
+ - type: map_at_1000
502
+ value: 10.902000000000001
503
+ - type: map_at_3
504
+ value: 8.639
505
+ - type: map_at_5
506
+ value: 9.264
507
+ - type: mrr_at_1
508
+ value: 8.706
509
+ - type: mrr_at_10
510
+ value: 12.606
511
+ - type: mrr_at_100
512
+ value: 13.455
513
+ - type: mrr_at_1000
514
+ value: 13.557
515
+ - type: mrr_at_3
516
+ value: 11.111
517
+ - type: mrr_at_5
518
+ value: 11.801
519
+ - type: ndcg_at_1
520
+ value: 8.706
521
+ - type: ndcg_at_10
522
+ value: 12.617999999999999
523
+ - type: ndcg_at_100
524
+ value: 17.34
525
+ - type: ndcg_at_1000
526
+ value: 20.905
527
+ - type: ndcg_at_3
528
+ value: 10.027999999999999
529
+ - type: ndcg_at_5
530
+ value: 11.063
531
+ - type: precision_at_1
532
+ value: 8.706
533
+ - type: precision_at_10
534
+ value: 2.45
535
+ - type: precision_at_100
536
+ value: 0.573
537
+ - type: precision_at_1000
538
+ value: 0.10200000000000001
539
+ - type: precision_at_3
540
+ value: 4.934
541
+ - type: precision_at_5
542
+ value: 3.6319999999999997
543
+ - type: recall_at_1
544
+ value: 6.537
545
+ - type: recall_at_10
546
+ value: 18.593
547
+ - type: recall_at_100
548
+ value: 39.922999999999995
549
+ - type: recall_at_1000
550
+ value: 66.08000000000001
551
+ - type: recall_at_3
552
+ value: 11.27
553
+ - type: recall_at_5
554
+ value: 13.996
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: None
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 18.319
566
+ - type: map_at_10
567
+ value: 24.237000000000002
568
+ - type: map_at_100
569
+ value: 25.406000000000002
570
+ - type: map_at_1000
571
+ value: 25.554
572
+ - type: map_at_3
573
+ value: 22.032
574
+ - type: map_at_5
575
+ value: 23.258000000000003
576
+ - type: mrr_at_1
577
+ value: 22.522000000000002
578
+ - type: mrr_at_10
579
+ value: 28.764
580
+ - type: mrr_at_100
581
+ value: 29.692
582
+ - type: mrr_at_1000
583
+ value: 29.781999999999996
584
+ - type: mrr_at_3
585
+ value: 26.468000000000004
586
+ - type: mrr_at_5
587
+ value: 27.801
588
+ - type: ndcg_at_1
589
+ value: 22.522000000000002
590
+ - type: ndcg_at_10
591
+ value: 28.549999999999997
592
+ - type: ndcg_at_100
593
+ value: 34.126
594
+ - type: ndcg_at_1000
595
+ value: 37.471
596
+ - type: ndcg_at_3
597
+ value: 24.643
598
+ - type: ndcg_at_5
599
+ value: 26.537
600
+ - type: precision_at_1
601
+ value: 22.522000000000002
602
+ - type: precision_at_10
603
+ value: 5.2940000000000005
604
+ - type: precision_at_100
605
+ value: 0.97
606
+ - type: precision_at_1000
607
+ value: 0.146
608
+ - type: precision_at_3
609
+ value: 11.485
610
+ - type: precision_at_5
611
+ value: 8.508000000000001
612
+ - type: recall_at_1
613
+ value: 18.319
614
+ - type: recall_at_10
615
+ value: 37.061
616
+ - type: recall_at_100
617
+ value: 61.68
618
+ - type: recall_at_1000
619
+ value: 84.885
620
+ - type: recall_at_3
621
+ value: 26.117
622
+ - type: recall_at_5
623
+ value: 30.939
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: None
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 12.307
635
+ - type: map_at_10
636
+ value: 17.764
637
+ - type: map_at_100
638
+ value: 18.843
639
+ - type: map_at_1000
640
+ value: 18.983
641
+ - type: map_at_3
642
+ value: 15.774
643
+ - type: map_at_5
644
+ value: 16.872999999999998
645
+ - type: mrr_at_1
646
+ value: 15.753
647
+ - type: mrr_at_10
648
+ value: 21.42
649
+ - type: mrr_at_100
650
+ value: 22.351
651
+ - type: mrr_at_1000
652
+ value: 22.448999999999998
653
+ - type: mrr_at_3
654
+ value: 19.368
655
+ - type: mrr_at_5
656
+ value: 20.527
657
+ - type: ndcg_at_1
658
+ value: 15.753
659
+ - type: ndcg_at_10
660
+ value: 21.573
661
+ - type: ndcg_at_100
662
+ value: 26.994
663
+ - type: ndcg_at_1000
664
+ value: 30.407
665
+ - type: ndcg_at_3
666
+ value: 17.968
667
+ - type: ndcg_at_5
668
+ value: 19.669
669
+ - type: precision_at_1
670
+ value: 15.753
671
+ - type: precision_at_10
672
+ value: 4.144
673
+ - type: precision_at_100
674
+ value: 0.826
675
+ - type: precision_at_1000
676
+ value: 0.129
677
+ - type: precision_at_3
678
+ value: 8.638
679
+ - type: precision_at_5
680
+ value: 6.575
681
+ - type: recall_at_1
682
+ value: 12.307
683
+ - type: recall_at_10
684
+ value: 29.615000000000002
685
+ - type: recall_at_100
686
+ value: 53.729000000000006
687
+ - type: recall_at_1000
688
+ value: 77.751
689
+ - type: recall_at_3
690
+ value: 19.584
691
+ - type: recall_at_5
692
+ value: 23.923
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: mteb/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 13.978749999999998
704
+ - type: map_at_10
705
+ value: 19.17908333333333
706
+ - type: map_at_100
707
+ value: 20.128416666666666
708
+ - type: map_at_1000
709
+ value: 20.25808333333333
710
+ - type: map_at_3
711
+ value: 17.398
712
+ - type: map_at_5
713
+ value: 18.342999999999996
714
+ - type: mrr_at_1
715
+ value: 17.03141666666667
716
+ - type: mrr_at_10
717
+ value: 22.300083333333333
718
+ - type: mrr_at_100
719
+ value: 23.13458333333334
720
+ - type: mrr_at_1000
721
+ value: 23.222583333333333
722
+ - type: mrr_at_3
723
+ value: 20.495749999999997
724
+ - type: mrr_at_5
725
+ value: 21.48033333333333
726
+ - type: ndcg_at_1
727
+ value: 17.03141666666667
728
+ - type: ndcg_at_10
729
+ value: 22.739833333333337
730
+ - type: ndcg_at_100
731
+ value: 27.511749999999996
732
+ - type: ndcg_at_1000
733
+ value: 30.706333333333337
734
+ - type: ndcg_at_3
735
+ value: 19.47566666666667
736
+ - type: ndcg_at_5
737
+ value: 20.91025
738
+ - type: precision_at_1
739
+ value: 17.03141666666667
740
+ - type: precision_at_10
741
+ value: 4.118166666666667
742
+ - type: precision_at_100
743
+ value: 0.7796666666666667
744
+ - type: precision_at_1000
745
+ value: 0.12458333333333332
746
+ - type: precision_at_3
747
+ value: 9.0545
748
+ - type: precision_at_5
749
+ value: 6.56175
750
+ - type: recall_at_1
751
+ value: 13.978749999999998
752
+ - type: recall_at_10
753
+ value: 30.441333333333333
754
+ - type: recall_at_100
755
+ value: 52.37841666666667
756
+ - type: recall_at_1000
757
+ value: 75.46725
758
+ - type: recall_at_3
759
+ value: 21.12483333333333
760
+ - type: recall_at_5
761
+ value: 24.88366666666667
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: None
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 10.685
773
+ - type: map_at_10
774
+ value: 14.92
775
+ - type: map_at_100
776
+ value: 15.620000000000001
777
+ - type: map_at_1000
778
+ value: 15.702
779
+ - type: map_at_3
780
+ value: 13.327
781
+ - type: map_at_5
782
+ value: 14.148
783
+ - type: mrr_at_1
784
+ value: 12.73
785
+ - type: mrr_at_10
786
+ value: 16.999
787
+ - type: mrr_at_100
788
+ value: 17.727999999999998
789
+ - type: mrr_at_1000
790
+ value: 17.799
791
+ - type: mrr_at_3
792
+ value: 15.440000000000001
793
+ - type: mrr_at_5
794
+ value: 16.299
795
+ - type: ndcg_at_1
796
+ value: 12.73
797
+ - type: ndcg_at_10
798
+ value: 17.892
799
+ - type: ndcg_at_100
800
+ value: 21.819
801
+ - type: ndcg_at_1000
802
+ value: 24.238
803
+ - type: ndcg_at_3
804
+ value: 14.865999999999998
805
+ - type: ndcg_at_5
806
+ value: 16.157
807
+ - type: precision_at_1
808
+ value: 12.73
809
+ - type: precision_at_10
810
+ value: 3.16
811
+ - type: precision_at_100
812
+ value: 0.563
813
+ - type: precision_at_1000
814
+ value: 0.084
815
+ - type: precision_at_3
816
+ value: 6.902
817
+ - type: precision_at_5
818
+ value: 5.031
819
+ - type: recall_at_1
820
+ value: 10.685
821
+ - type: recall_at_10
822
+ value: 25.291999999999998
823
+ - type: recall_at_100
824
+ value: 43.815
825
+ - type: recall_at_1000
826
+ value: 62.278
827
+ - type: recall_at_3
828
+ value: 16.481
829
+ - type: recall_at_5
830
+ value: 19.869
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: None
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: 46989137a86843e03a6195de44b09deda022eec7
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 7.295
842
+ - type: map_at_10
843
+ value: 10.568
844
+ - type: map_at_100
845
+ value: 11.224
846
+ - type: map_at_1000
847
+ value: 11.354000000000001
848
+ - type: map_at_3
849
+ value: 9.41
850
+ - type: map_at_5
851
+ value: 10.055
852
+ - type: mrr_at_1
853
+ value: 9.36
854
+ - type: mrr_at_10
855
+ value: 12.956000000000001
856
+ - type: mrr_at_100
857
+ value: 13.628000000000002
858
+ - type: mrr_at_1000
859
+ value: 13.735
860
+ - type: mrr_at_3
861
+ value: 11.608
862
+ - type: mrr_at_5
863
+ value: 12.367
864
+ - type: ndcg_at_1
865
+ value: 9.36
866
+ - type: ndcg_at_10
867
+ value: 12.992
868
+ - type: ndcg_at_100
869
+ value: 16.681
870
+ - type: ndcg_at_1000
871
+ value: 20.355
872
+ - type: ndcg_at_3
873
+ value: 10.756
874
+ - type: ndcg_at_5
875
+ value: 11.805
876
+ - type: precision_at_1
877
+ value: 9.36
878
+ - type: precision_at_10
879
+ value: 2.46
880
+ - type: precision_at_100
881
+ value: 0.523
882
+ - type: precision_at_1000
883
+ value: 0.099
884
+ - type: precision_at_3
885
+ value: 5.1499999999999995
886
+ - type: precision_at_5
887
+ value: 3.882
888
+ - type: recall_at_1
889
+ value: 7.295
890
+ - type: recall_at_10
891
+ value: 18.109
892
+ - type: recall_at_100
893
+ value: 35.382000000000005
894
+ - type: recall_at_1000
895
+ value: 62.734
896
+ - type: recall_at_3
897
+ value: 11.906
898
+ - type: recall_at_5
899
+ value: 14.524999999999999
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: None
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 12.784999999999998
911
+ - type: map_at_10
912
+ value: 16.897000000000002
913
+ - type: map_at_100
914
+ value: 17.804000000000002
915
+ - type: map_at_1000
916
+ value: 17.925
917
+ - type: map_at_3
918
+ value: 15.494
919
+ - type: map_at_5
920
+ value: 16.223000000000003
921
+ - type: mrr_at_1
922
+ value: 15.485
923
+ - type: mrr_at_10
924
+ value: 20.007
925
+ - type: mrr_at_100
926
+ value: 20.882
927
+ - type: mrr_at_1000
928
+ value: 20.979
929
+ - type: mrr_at_3
930
+ value: 18.392
931
+ - type: mrr_at_5
932
+ value: 19.320999999999998
933
+ - type: ndcg_at_1
934
+ value: 15.485
935
+ - type: ndcg_at_10
936
+ value: 19.993
937
+ - type: ndcg_at_100
938
+ value: 24.945999999999998
939
+ - type: ndcg_at_1000
940
+ value: 28.233000000000004
941
+ - type: ndcg_at_3
942
+ value: 17.19
943
+ - type: ndcg_at_5
944
+ value: 18.404999999999998
945
+ - type: precision_at_1
946
+ value: 15.485
947
+ - type: precision_at_10
948
+ value: 3.3680000000000003
949
+ - type: precision_at_100
950
+ value: 0.654
951
+ - type: precision_at_1000
952
+ value: 0.106
953
+ - type: precision_at_3
954
+ value: 7.805
955
+ - type: precision_at_5
956
+ value: 5.56
957
+ - type: recall_at_1
958
+ value: 12.784999999999998
959
+ - type: recall_at_10
960
+ value: 26.740000000000002
961
+ - type: recall_at_100
962
+ value: 49.907000000000004
963
+ - type: recall_at_1000
964
+ value: 73.85000000000001
965
+ - type: recall_at_3
966
+ value: 18.741
967
+ - type: recall_at_5
968
+ value: 21.894
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: None
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 15.253
980
+ - type: map_at_10
981
+ value: 20.666999999999998
982
+ - type: map_at_100
983
+ value: 21.809
984
+ - type: map_at_1000
985
+ value: 22.012
986
+ - type: map_at_3
987
+ value: 18.754
988
+ - type: map_at_5
989
+ value: 19.743
990
+ - type: mrr_at_1
991
+ value: 19.17
992
+ - type: mrr_at_10
993
+ value: 24.614
994
+ - type: mrr_at_100
995
+ value: 25.487
996
+ - type: mrr_at_1000
997
+ value: 25.575
998
+ - type: mrr_at_3
999
+ value: 22.759999999999998
1000
+ - type: mrr_at_5
1001
+ value: 23.818
1002
+ - type: ndcg_at_1
1003
+ value: 19.17
1004
+ - type: ndcg_at_10
1005
+ value: 24.685000000000002
1006
+ - type: ndcg_at_100
1007
+ value: 29.84
1008
+ - type: ndcg_at_1000
1009
+ value: 33.548
1010
+ - type: ndcg_at_3
1011
+ value: 21.569
1012
+ - type: ndcg_at_5
1013
+ value: 22.842000000000002
1014
+ - type: precision_at_1
1015
+ value: 19.17
1016
+ - type: precision_at_10
1017
+ value: 4.862
1018
+ - type: precision_at_100
1019
+ value: 1.105
1020
+ - type: precision_at_1000
1021
+ value: 0.2
1022
+ - type: precision_at_3
1023
+ value: 10.277
1024
+ - type: precision_at_5
1025
+ value: 7.431
1026
+ - type: recall_at_1
1027
+ value: 15.253
1028
+ - type: recall_at_10
1029
+ value: 31.858999999999998
1030
+ - type: recall_at_100
1031
+ value: 56.477999999999994
1032
+ - type: recall_at_1000
1033
+ value: 81.56099999999999
1034
+ - type: recall_at_3
1035
+ value: 22.11
1036
+ - type: recall_at_5
1037
+ value: 26.003
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: None
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 9.68
1049
+ - type: map_at_10
1050
+ value: 14.121
1051
+ - type: map_at_100
1052
+ value: 14.923
1053
+ - type: map_at_1000
1054
+ value: 15.046999999999999
1055
+ - type: map_at_3
1056
+ value: 12.73
1057
+ - type: map_at_5
1058
+ value: 13.402
1059
+ - type: mrr_at_1
1060
+ value: 10.906
1061
+ - type: mrr_at_10
1062
+ value: 15.549
1063
+ - type: mrr_at_100
1064
+ value: 16.302
1065
+ - type: mrr_at_1000
1066
+ value: 16.407
1067
+ - type: mrr_at_3
1068
+ value: 13.986
1069
+ - type: mrr_at_5
1070
+ value: 14.743999999999998
1071
+ - type: ndcg_at_1
1072
+ value: 10.906
1073
+ - type: ndcg_at_10
1074
+ value: 17.064
1075
+ - type: ndcg_at_100
1076
+ value: 21.474
1077
+ - type: ndcg_at_1000
1078
+ value: 24.964
1079
+ - type: ndcg_at_3
1080
+ value: 14.069
1081
+ - type: ndcg_at_5
1082
+ value: 15.268999999999998
1083
+ - type: precision_at_1
1084
+ value: 10.906
1085
+ - type: precision_at_10
1086
+ value: 2.828
1087
+ - type: precision_at_100
1088
+ value: 0.551
1089
+ - type: precision_at_1000
1090
+ value: 0.095
1091
+ - type: precision_at_3
1092
+ value: 6.1
1093
+ - type: precision_at_5
1094
+ value: 4.399
1095
+ - type: recall_at_1
1096
+ value: 9.68
1097
+ - type: recall_at_10
1098
+ value: 24.941
1099
+ - type: recall_at_100
1100
+ value: 46.189
1101
+ - type: recall_at_1000
1102
+ value: 72.796
1103
+ - type: recall_at_3
1104
+ value: 16.765
1105
+ - type: recall_at_5
1106
+ value: 19.55
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: None
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 6.151
1118
+ - type: map_at_10
1119
+ value: 11.699
1120
+ - type: map_at_100
1121
+ value: 13.213
1122
+ - type: map_at_1000
1123
+ value: 13.441
1124
+ - type: map_at_3
1125
+ value: 9.356
1126
+ - type: map_at_5
1127
+ value: 10.456999999999999
1128
+ - type: mrr_at_1
1129
+ value: 13.29
1130
+ - type: mrr_at_10
1131
+ value: 23.102
1132
+ - type: mrr_at_100
1133
+ value: 24.262
1134
+ - type: mrr_at_1000
1135
+ value: 24.332
1136
+ - type: mrr_at_3
1137
+ value: 19.75
1138
+ - type: mrr_at_5
1139
+ value: 21.490000000000002
1140
+ - type: ndcg_at_1
1141
+ value: 13.29
1142
+ - type: ndcg_at_10
1143
+ value: 17.761
1144
+ - type: ndcg_at_100
1145
+ value: 24.587
1146
+ - type: ndcg_at_1000
1147
+ value: 29.004
1148
+ - type: ndcg_at_3
1149
+ value: 13.247
1150
+ - type: ndcg_at_5
1151
+ value: 14.776
1152
+ - type: precision_at_1
1153
+ value: 13.29
1154
+ - type: precision_at_10
1155
+ value: 6.104
1156
+ - type: precision_at_100
1157
+ value: 1.343
1158
+ - type: precision_at_1000
1159
+ value: 0.213
1160
+ - type: precision_at_3
1161
+ value: 10.315000000000001
1162
+ - type: precision_at_5
1163
+ value: 8.352
1164
+ - type: recall_at_1
1165
+ value: 6.151
1166
+ - type: recall_at_10
1167
+ value: 23.374
1168
+ - type: recall_at_100
1169
+ value: 47.381
1170
+ - type: recall_at_1000
1171
+ value: 72.707
1172
+ - type: recall_at_3
1173
+ value: 12.709000000000001
1174
+ - type: recall_at_5
1175
+ value: 16.575
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: None
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 3.2969999999999997
1187
+ - type: map_at_10
1188
+ value: 8.185
1189
+ - type: map_at_100
1190
+ value: 11.555
1191
+ - type: map_at_1000
1192
+ value: 12.506
1193
+ - type: map_at_3
1194
+ value: 5.63
1195
+ - type: map_at_5
1196
+ value: 6.851
1197
+ - type: mrr_at_1
1198
+ value: 37.5
1199
+ - type: mrr_at_10
1200
+ value: 47.846
1201
+ - type: mrr_at_100
1202
+ value: 48.595
1203
+ - type: mrr_at_1000
1204
+ value: 48.619
1205
+ - type: mrr_at_3
1206
+ value: 44.792
1207
+ - type: mrr_at_5
1208
+ value: 46.367000000000004
1209
+ - type: ndcg_at_1
1210
+ value: 27.375
1211
+ - type: ndcg_at_10
1212
+ value: 21.753
1213
+ - type: ndcg_at_100
1214
+ value: 24.714
1215
+ - type: ndcg_at_1000
1216
+ value: 31.426
1217
+ - type: ndcg_at_3
1218
+ value: 23.781
1219
+ - type: ndcg_at_5
1220
+ value: 22.808
1221
+ - type: precision_at_1
1222
+ value: 37.5
1223
+ - type: precision_at_10
1224
+ value: 19.775000000000002
1225
+ - type: precision_at_100
1226
+ value: 6.45
1227
+ - type: precision_at_1000
1228
+ value: 1.434
1229
+ - type: precision_at_3
1230
+ value: 28.333000000000002
1231
+ - type: precision_at_5
1232
+ value: 24.95
1233
+ - type: recall_at_1
1234
+ value: 3.2969999999999997
1235
+ - type: recall_at_10
1236
+ value: 12.861
1237
+ - type: recall_at_100
1238
+ value: 31.055
1239
+ - type: recall_at_1000
1240
+ value: 53.855
1241
+ - type: recall_at_3
1242
+ value: 6.848999999999999
1243
+ - type: recall_at_5
1244
+ value: 9.328
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: None
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 45.91
1256
+ - type: f1
1257
+ value: 41.614000185716236
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: None
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 14.413
1269
+ - type: map_at_10
1270
+ value: 21.197
1271
+ - type: map_at_100
1272
+ value: 22.116
1273
+ - type: map_at_1000
1274
+ value: 22.186
1275
+ - type: map_at_3
1276
+ value: 18.867
1277
+ - type: map_at_5
1278
+ value: 20.154
1279
+ - type: mrr_at_1
1280
+ value: 15.302
1281
+ - type: mrr_at_10
1282
+ value: 22.462
1283
+ - type: mrr_at_100
1284
+ value: 23.391000000000002
1285
+ - type: mrr_at_1000
1286
+ value: 23.452
1287
+ - type: mrr_at_3
1288
+ value: 20.012
1289
+ - type: mrr_at_5
1290
+ value: 21.38
1291
+ - type: ndcg_at_1
1292
+ value: 15.302
1293
+ - type: ndcg_at_10
1294
+ value: 25.458
1295
+ - type: ndcg_at_100
1296
+ value: 30.144
1297
+ - type: ndcg_at_1000
1298
+ value: 32.124
1299
+ - type: ndcg_at_3
1300
+ value: 20.638
1301
+ - type: ndcg_at_5
1302
+ value: 22.964000000000002
1303
+ - type: precision_at_1
1304
+ value: 15.302
1305
+ - type: precision_at_10
1306
+ value: 4.086
1307
+ - type: precision_at_100
1308
+ value: 0.662
1309
+ - type: precision_at_1000
1310
+ value: 0.08499999999999999
1311
+ - type: precision_at_3
1312
+ value: 8.806
1313
+ - type: precision_at_5
1314
+ value: 6.514
1315
+ - type: recall_at_1
1316
+ value: 14.413
1317
+ - type: recall_at_10
1318
+ value: 37.682
1319
+ - type: recall_at_100
1320
+ value: 59.521
1321
+ - type: recall_at_1000
1322
+ value: 74.95100000000001
1323
+ - type: recall_at_3
1324
+ value: 24.618000000000002
1325
+ - type: recall_at_5
1326
+ value: 30.186
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: None
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 6.948
1338
+ - type: map_at_10
1339
+ value: 11.461
1340
+ - type: map_at_100
1341
+ value: 12.565000000000001
1342
+ - type: map_at_1000
1343
+ value: 12.76
1344
+ - type: map_at_3
1345
+ value: 9.679
1346
+ - type: map_at_5
1347
+ value: 10.59
1348
+ - type: mrr_at_1
1349
+ value: 13.58
1350
+ - type: mrr_at_10
1351
+ value: 19.377
1352
+ - type: mrr_at_100
1353
+ value: 20.435
1354
+ - type: mrr_at_1000
1355
+ value: 20.526
1356
+ - type: mrr_at_3
1357
+ value: 17.000999999999998
1358
+ - type: mrr_at_5
1359
+ value: 18.374
1360
+ - type: ndcg_at_1
1361
+ value: 13.58
1362
+ - type: ndcg_at_10
1363
+ value: 15.756999999999998
1364
+ - type: ndcg_at_100
1365
+ value: 21.529999999999998
1366
+ - type: ndcg_at_1000
1367
+ value: 25.956000000000003
1368
+ - type: ndcg_at_3
1369
+ value: 12.848
1370
+ - type: ndcg_at_5
1371
+ value: 13.998
1372
+ - type: precision_at_1
1373
+ value: 13.58
1374
+ - type: precision_at_10
1375
+ value: 4.491
1376
+ - type: precision_at_100
1377
+ value: 1.035
1378
+ - type: precision_at_1000
1379
+ value: 0.182
1380
+ - type: precision_at_3
1381
+ value: 8.385
1382
+ - type: precision_at_5
1383
+ value: 6.6049999999999995
1384
+ - type: recall_at_1
1385
+ value: 6.948
1386
+ - type: recall_at_10
1387
+ value: 20.569000000000003
1388
+ - type: recall_at_100
1389
+ value: 43.488
1390
+ - type: recall_at_1000
1391
+ value: 70.87400000000001
1392
+ - type: recall_at_3
1393
+ value: 12.17
1394
+ - type: recall_at_5
1395
+ value: 15.495999999999999
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: None
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 14.854999999999999
1407
+ - type: map_at_10
1408
+ value: 21.003
1409
+ - type: map_at_100
1410
+ value: 21.797
1411
+ - type: map_at_1000
1412
+ value: 21.904
1413
+ - type: map_at_3
1414
+ value: 19.258
1415
+ - type: map_at_5
1416
+ value: 20.188
1417
+ - type: mrr_at_1
1418
+ value: 29.709999999999997
1419
+ - type: mrr_at_10
1420
+ value: 36.414
1421
+ - type: mrr_at_100
1422
+ value: 37.113
1423
+ - type: mrr_at_1000
1424
+ value: 37.179
1425
+ - type: mrr_at_3
1426
+ value: 34.542
1427
+ - type: mrr_at_5
1428
+ value: 35.619
1429
+ - type: ndcg_at_1
1430
+ value: 29.709999999999997
1431
+ - type: ndcg_at_10
1432
+ value: 27.198
1433
+ - type: ndcg_at_100
1434
+ value: 31.052999999999997
1435
+ - type: ndcg_at_1000
1436
+ value: 33.757
1437
+ - type: ndcg_at_3
1438
+ value: 23.775
1439
+ - type: ndcg_at_5
1440
+ value: 25.399
1441
+ - type: precision_at_1
1442
+ value: 29.709999999999997
1443
+ - type: precision_at_10
1444
+ value: 6.078
1445
+ - type: precision_at_100
1446
+ value: 0.919
1447
+ - type: precision_at_1000
1448
+ value: 0.128
1449
+ - type: precision_at_3
1450
+ value: 15.093
1451
+ - type: precision_at_5
1452
+ value: 10.344000000000001
1453
+ - type: recall_at_1
1454
+ value: 14.854999999999999
1455
+ - type: recall_at_10
1456
+ value: 30.392000000000003
1457
+ - type: recall_at_100
1458
+ value: 45.949
1459
+ - type: recall_at_1000
1460
+ value: 64.078
1461
+ - type: recall_at_3
1462
+ value: 22.64
1463
+ - type: recall_at_5
1464
+ value: 25.861
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: None
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 66.3596
1476
+ - type: ap
1477
+ value: 60.91255566890042
1478
+ - type: f1
1479
+ value: 66.1523853101571
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: None
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 6.046
1491
+ - type: map_at_10
1492
+ value: 10.651
1493
+ - type: map_at_100
1494
+ value: 11.505
1495
+ - type: map_at_1000
1496
+ value: 11.61
1497
+ - type: map_at_3
1498
+ value: 8.959999999999999
1499
+ - type: map_at_5
1500
+ value: 9.843
1501
+ - type: mrr_at_1
1502
+ value: 6.261
1503
+ - type: mrr_at_10
1504
+ value: 10.934000000000001
1505
+ - type: mrr_at_100
1506
+ value: 11.795
1507
+ - type: mrr_at_1000
1508
+ value: 11.897
1509
+ - type: mrr_at_3
1510
+ value: 9.205
1511
+ - type: mrr_at_5
1512
+ value: 10.112
1513
+ - type: ndcg_at_1
1514
+ value: 6.246
1515
+ - type: ndcg_at_10
1516
+ value: 13.559
1517
+ - type: ndcg_at_100
1518
+ value: 18.291
1519
+ - type: ndcg_at_1000
1520
+ value: 21.503
1521
+ - type: ndcg_at_3
1522
+ value: 10.012
1523
+ - type: ndcg_at_5
1524
+ value: 11.605
1525
+ - type: precision_at_1
1526
+ value: 6.246
1527
+ - type: precision_at_10
1528
+ value: 2.357
1529
+ - type: precision_at_100
1530
+ value: 0.481
1531
+ - type: precision_at_1000
1532
+ value: 0.076
1533
+ - type: precision_at_3
1534
+ value: 4.436
1535
+ - type: precision_at_5
1536
+ value: 3.4610000000000003
1537
+ - type: recall_at_1
1538
+ value: 6.046
1539
+ - type: recall_at_10
1540
+ value: 22.621
1541
+ - type: recall_at_100
1542
+ value: 45.829
1543
+ - type: recall_at_1000
1544
+ value: 71.735
1545
+ - type: recall_at_3
1546
+ value: 12.826
1547
+ - type: recall_at_5
1548
+ value: 16.658
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: None
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 88.10989512083903
1560
+ - type: f1
1561
+ value: 87.64152476625755
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: None
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 57.87505699954399
1573
+ - type: f1
1574
+ value: 40.00822983589675
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: None
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 63.21788836583726
1586
+ - type: f1
1587
+ value: 61.64373490787742
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: None
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 72.50168123739071
1599
+ - type: f1
1600
+ value: 71.25047204682383
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: None
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 29.30894849088611
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: None
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 27.369395178404975
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: None
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 30.225892079841838
1634
+ - type: mrr
1635
+ value: 31.239259568046673
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: None
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 4.115
1647
+ - type: map_at_10
1648
+ value: 7.8149999999999995
1649
+ - type: map_at_100
1650
+ value: 9.962
1651
+ - type: map_at_1000
1652
+ value: 11.253
1653
+ - type: map_at_3
1654
+ value: 6.014
1655
+ - type: map_at_5
1656
+ value: 6.874
1657
+ - type: mrr_at_1
1658
+ value: 32.198
1659
+ - type: mrr_at_10
1660
+ value: 42.025
1661
+ - type: mrr_at_100
1662
+ value: 42.875
1663
+ - type: mrr_at_1000
1664
+ value: 42.925999999999995
1665
+ - type: mrr_at_3
1666
+ value: 39.318999999999996
1667
+ - type: mrr_at_5
1668
+ value: 41.192
1669
+ - type: ndcg_at_1
1670
+ value: 30.186
1671
+ - type: ndcg_at_10
1672
+ value: 24.194
1673
+ - type: ndcg_at_100
1674
+ value: 23.426
1675
+ - type: ndcg_at_1000
1676
+ value: 32.955
1677
+ - type: ndcg_at_3
1678
+ value: 27.528999999999996
1679
+ - type: ndcg_at_5
1680
+ value: 26.295
1681
+ - type: precision_at_1
1682
+ value: 32.198
1683
+ - type: precision_at_10
1684
+ value: 17.740000000000002
1685
+ - type: precision_at_100
1686
+ value: 6.433
1687
+ - type: precision_at_1000
1688
+ value: 1.9609999999999999
1689
+ - type: precision_at_3
1690
+ value: 26.006
1691
+ - type: precision_at_5
1692
+ value: 22.786
1693
+ - type: recall_at_1
1694
+ value: 4.115
1695
+ - type: recall_at_10
1696
+ value: 11.774
1697
+ - type: recall_at_100
1698
+ value: 26.046999999999997
1699
+ - type: recall_at_1000
1700
+ value: 60.171
1701
+ - type: recall_at_3
1702
+ value: 6.935
1703
+ - type: recall_at_5
1704
+ value: 8.958
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: None
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 7.959
1716
+ - type: map_at_10
1717
+ value: 13.771
1718
+ - type: map_at_100
1719
+ value: 14.954
1720
+ - type: map_at_1000
1721
+ value: 15.061
1722
+ - type: map_at_3
1723
+ value: 11.548
1724
+ - type: map_at_5
1725
+ value: 12.686
1726
+ - type: mrr_at_1
1727
+ value: 9.067
1728
+ - type: mrr_at_10
1729
+ value: 15.262
1730
+ - type: mrr_at_100
1731
+ value: 16.358
1732
+ - type: mrr_at_1000
1733
+ value: 16.447
1734
+ - type: mrr_at_3
1735
+ value: 12.895999999999999
1736
+ - type: mrr_at_5
1737
+ value: 14.13
1738
+ - type: ndcg_at_1
1739
+ value: 9.067
1740
+ - type: ndcg_at_10
1741
+ value: 17.711
1742
+ - type: ndcg_at_100
1743
+ value: 23.771
1744
+ - type: ndcg_at_1000
1745
+ value: 26.695
1746
+ - type: ndcg_at_3
1747
+ value: 13.04
1748
+ - type: ndcg_at_5
1749
+ value: 15.098
1750
+ - type: precision_at_1
1751
+ value: 9.067
1752
+ - type: precision_at_10
1753
+ value: 3.36
1754
+ - type: precision_at_100
1755
+ value: 0.6819999999999999
1756
+ - type: precision_at_1000
1757
+ value: 0.096
1758
+ - type: precision_at_3
1759
+ value: 6.132
1760
+ - type: precision_at_5
1761
+ value: 4.832
1762
+ - type: recall_at_1
1763
+ value: 7.959
1764
+ - type: recall_at_10
1765
+ value: 28.529
1766
+ - type: recall_at_100
1767
+ value: 56.747
1768
+ - type: recall_at_1000
1769
+ value: 79.251
1770
+ - type: recall_at_3
1771
+ value: 16.066
1772
+ - type: recall_at_5
1773
+ value: 20.836
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: None
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 63.468999999999994
1785
+ - type: map_at_10
1786
+ value: 76.363
1787
+ - type: map_at_100
1788
+ value: 77.13799999999999
1789
+ - type: map_at_1000
1790
+ value: 77.169
1791
+ - type: map_at_3
1792
+ value: 73.303
1793
+ - type: map_at_5
1794
+ value: 75.139
1795
+ - type: mrr_at_1
1796
+ value: 73.09
1797
+ - type: mrr_at_10
1798
+ value: 80.379
1799
+ - type: mrr_at_100
1800
+ value: 80.632
1801
+ - type: mrr_at_1000
1802
+ value: 80.637
1803
+ - type: mrr_at_3
1804
+ value: 78.9
1805
+ - type: mrr_at_5
1806
+ value: 79.83200000000001
1807
+ - type: ndcg_at_1
1808
+ value: 73.14
1809
+ - type: ndcg_at_10
1810
+ value: 80.99
1811
+ - type: ndcg_at_100
1812
+ value: 83.086
1813
+ - type: ndcg_at_1000
1814
+ value: 83.421
1815
+ - type: ndcg_at_3
1816
+ value: 77.263
1817
+ - type: ndcg_at_5
1818
+ value: 79.175
1819
+ - type: precision_at_1
1820
+ value: 73.14
1821
+ - type: precision_at_10
1822
+ value: 12.324
1823
+ - type: precision_at_100
1824
+ value: 1.469
1825
+ - type: precision_at_1000
1826
+ value: 0.155
1827
+ - type: precision_at_3
1828
+ value: 33.562999999999995
1829
+ - type: precision_at_5
1830
+ value: 22.259999999999998
1831
+ - type: recall_at_1
1832
+ value: 63.468999999999994
1833
+ - type: recall_at_10
1834
+ value: 89.997
1835
+ - type: recall_at_100
1836
+ value: 97.87
1837
+ - type: recall_at_1000
1838
+ value: 99.714
1839
+ - type: recall_at_3
1840
+ value: 79.45100000000001
1841
+ - type: recall_at_5
1842
+ value: 84.652
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: None
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 40.96803215988553
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: None
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 44.76290891260663
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: None
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 3.118
1876
+ - type: map_at_10
1877
+ value: 7.127999999999999
1878
+ - type: map_at_100
1879
+ value: 8.551
1880
+ - type: map_at_1000
1881
+ value: 8.819
1882
+ - type: map_at_3
1883
+ value: 5.269
1884
+ - type: map_at_5
1885
+ value: 6.136
1886
+ - type: mrr_at_1
1887
+ value: 15.299999999999999
1888
+ - type: mrr_at_10
1889
+ value: 23.138
1890
+ - type: mrr_at_100
1891
+ value: 24.354
1892
+ - type: mrr_at_1000
1893
+ value: 24.449
1894
+ - type: mrr_at_3
1895
+ value: 20.349999999999998
1896
+ - type: mrr_at_5
1897
+ value: 21.875
1898
+ - type: ndcg_at_1
1899
+ value: 15.299999999999999
1900
+ - type: ndcg_at_10
1901
+ value: 12.7
1902
+ - type: ndcg_at_100
1903
+ value: 19.177
1904
+ - type: ndcg_at_1000
1905
+ value: 24.578
1906
+ - type: ndcg_at_3
1907
+ value: 12.076
1908
+ - type: ndcg_at_5
1909
+ value: 10.446
1910
+ - type: precision_at_1
1911
+ value: 15.299999999999999
1912
+ - type: precision_at_10
1913
+ value: 6.5600000000000005
1914
+ - type: precision_at_100
1915
+ value: 1.598
1916
+ - type: precision_at_1000
1917
+ value: 0.29
1918
+ - type: precision_at_3
1919
+ value: 11.200000000000001
1920
+ - type: precision_at_5
1921
+ value: 9.04
1922
+ - type: recall_at_1
1923
+ value: 3.118
1924
+ - type: recall_at_10
1925
+ value: 13.297999999999998
1926
+ - type: recall_at_100
1927
+ value: 32.427
1928
+ - type: recall_at_1000
1929
+ value: 58.885
1930
+ - type: recall_at_3
1931
+ value: 6.827999999999999
1932
+ - type: recall_at_5
1933
+ value: 9.173
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: None
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 76.43930654983161
1945
+ - type: cos_sim_spearman
1946
+ value: 64.67852678771158
1947
+ - type: euclidean_pearson
1948
+ value: 71.3061879333313
1949
+ - type: euclidean_spearman
1950
+ value: 64.67866157468679
1951
+ - type: manhattan_pearson
1952
+ value: 69.51075530995897
1953
+ - type: manhattan_spearman
1954
+ value: 63.82662313156165
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: None
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 73.65362279607574
1966
+ - type: cos_sim_spearman
1967
+ value: 64.97375169407779
1968
+ - type: euclidean_pearson
1969
+ value: 70.50786081642359
1970
+ - type: euclidean_spearman
1971
+ value: 64.97517508701773
1972
+ - type: manhattan_pearson
1973
+ value: 69.51012145127774
1974
+ - type: manhattan_spearman
1975
+ value: 64.81905653953442
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: None
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 75.02560272667618
1987
+ - type: cos_sim_spearman
1988
+ value: 76.85285173868739
1989
+ - type: euclidean_pearson
1990
+ value: 76.51659956643294
1991
+ - type: euclidean_spearman
1992
+ value: 76.85288956038684
1993
+ - type: manhattan_pearson
1994
+ value: 77.15391795740369
1995
+ - type: manhattan_spearman
1996
+ value: 77.55482712197826
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: None
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 75.88413419187634
2008
+ - type: cos_sim_spearman
2009
+ value: 71.81224584659623
2010
+ - type: euclidean_pearson
2011
+ value: 75.30536428389317
2012
+ - type: euclidean_spearman
2013
+ value: 71.81223615883246
2014
+ - type: manhattan_pearson
2015
+ value: 74.49619807839628
2016
+ - type: manhattan_spearman
2017
+ value: 71.45719514379861
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: None
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 78.17595987680231
2029
+ - type: cos_sim_spearman
2030
+ value: 79.69244239201231
2031
+ - type: euclidean_pearson
2032
+ value: 79.76482765319105
2033
+ - type: euclidean_spearman
2034
+ value: 79.69243514352287
2035
+ - type: manhattan_pearson
2036
+ value: 78.95938461387554
2037
+ - type: manhattan_spearman
2038
+ value: 79.12374541215064
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: None
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 74.19691031147148
2050
+ - type: cos_sim_spearman
2051
+ value: 75.6670693739496
2052
+ - type: euclidean_pearson
2053
+ value: 75.83043624320031
2054
+ - type: euclidean_spearman
2055
+ value: 75.66761977438898
2056
+ - type: manhattan_pearson
2057
+ value: 75.77299348357039
2058
+ - type: manhattan_spearman
2059
+ value: 75.55171542186395
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: None
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 81.6132447770844
2071
+ - type: cos_sim_spearman
2072
+ value: 82.86761864975185
2073
+ - type: euclidean_pearson
2074
+ value: 82.79978751053565
2075
+ - type: euclidean_spearman
2076
+ value: 82.8684934691074
2077
+ - type: manhattan_pearson
2078
+ value: 82.34063577443474
2079
+ - type: manhattan_spearman
2080
+ value: 82.44500370747792
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: None
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 57.122789236461344
2092
+ - type: cos_sim_spearman
2093
+ value: 59.32471385840999
2094
+ - type: euclidean_pearson
2095
+ value: 60.436929454793386
2096
+ - type: euclidean_spearman
2097
+ value: 59.32471385840999
2098
+ - type: manhattan_pearson
2099
+ value: 62.55817551321529
2100
+ - type: manhattan_spearman
2101
+ value: 60.72936294004832
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: None
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 75.51421130475329
2113
+ - type: cos_sim_spearman
2114
+ value: 74.18767551459518
2115
+ - type: euclidean_pearson
2116
+ value: 76.30778235018026
2117
+ - type: euclidean_spearman
2118
+ value: 74.18769398451926
2119
+ - type: manhattan_pearson
2120
+ value: 75.98020747073735
2121
+ - type: manhattan_spearman
2122
+ value: 74.1108346690318
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: None
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 74.72194768168208
2134
+ - type: mrr
2135
+ value: 91.43610293120096
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: None
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 30.528
2147
+ - type: map_at_10
2148
+ value: 39.351
2149
+ - type: map_at_100
2150
+ value: 40.461000000000006
2151
+ - type: map_at_1000
2152
+ value: 40.535
2153
+ - type: map_at_3
2154
+ value: 36.741
2155
+ - type: map_at_5
2156
+ value: 38.588
2157
+ - type: mrr_at_1
2158
+ value: 32.667
2159
+ - type: mrr_at_10
2160
+ value: 41.123
2161
+ - type: mrr_at_100
2162
+ value: 42.135
2163
+ - type: mrr_at_1000
2164
+ value: 42.197
2165
+ - type: mrr_at_3
2166
+ value: 38.944
2167
+ - type: mrr_at_5
2168
+ value: 40.528
2169
+ - type: ndcg_at_1
2170
+ value: 32.667
2171
+ - type: ndcg_at_10
2172
+ value: 44.06
2173
+ - type: ndcg_at_100
2174
+ value: 49.599
2175
+ - type: ndcg_at_1000
2176
+ value: 51.573
2177
+ - type: ndcg_at_3
2178
+ value: 39.373999999999995
2179
+ - type: ndcg_at_5
2180
+ value: 42.393
2181
+ - type: precision_at_1
2182
+ value: 32.667
2183
+ - type: precision_at_10
2184
+ value: 6.267
2185
+ - type: precision_at_100
2186
+ value: 0.9329999999999999
2187
+ - type: precision_at_1000
2188
+ value: 0.11100000000000002
2189
+ - type: precision_at_3
2190
+ value: 16.111
2191
+ - type: precision_at_5
2192
+ value: 11.267000000000001
2193
+ - type: recall_at_1
2194
+ value: 30.528
2195
+ - type: recall_at_10
2196
+ value: 56.77799999999999
2197
+ - type: recall_at_100
2198
+ value: 82.73899999999999
2199
+ - type: recall_at_1000
2200
+ value: 98.2
2201
+ - type: recall_at_3
2202
+ value: 44.806000000000004
2203
+ - type: recall_at_5
2204
+ value: 52.0
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: None
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.71386138613862
2216
+ - type: cos_sim_ap
2217
+ value: 91.49236791906557
2218
+ - type: cos_sim_f1
2219
+ value: 85.24262131065534
2220
+ - type: cos_sim_precision
2221
+ value: 85.28528528528528
2222
+ - type: cos_sim_recall
2223
+ value: 85.2
2224
+ - type: dot_accuracy
2225
+ value: 99.71386138613862
2226
+ - type: dot_ap
2227
+ value: 91.49236791906557
2228
+ - type: dot_f1
2229
+ value: 85.24262131065534
2230
+ - type: dot_precision
2231
+ value: 85.28528528528528
2232
+ - type: dot_recall
2233
+ value: 85.2
2234
+ - type: euclidean_accuracy
2235
+ value: 99.71386138613862
2236
+ - type: euclidean_ap
2237
+ value: 91.49236791906557
2238
+ - type: euclidean_f1
2239
+ value: 85.24262131065534
2240
+ - type: euclidean_precision
2241
+ value: 85.28528528528528
2242
+ - type: euclidean_recall
2243
+ value: 85.2
2244
+ - type: manhattan_accuracy
2245
+ value: 99.74356435643564
2246
+ - type: manhattan_ap
2247
+ value: 92.92378153295812
2248
+ - type: manhattan_f1
2249
+ value: 86.91358024691358
2250
+ - type: manhattan_precision
2251
+ value: 85.85365853658537
2252
+ - type: manhattan_recall
2253
+ value: 88.0
2254
+ - type: max_accuracy
2255
+ value: 99.74356435643564
2256
+ - type: max_ap
2257
+ value: 92.92378153295812
2258
+ - type: max_f1
2259
+ value: 86.91358024691358
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: None
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 46.49650440995953
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: None
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 30.729040984470192
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: None
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 42.340961146720595
2293
+ - type: mrr
2294
+ value: 42.78318903318903
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: None
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 31.518691188419957
2306
+ - type: cos_sim_spearman
2307
+ value: 31.803967934264456
2308
+ - type: dot_pearson
2309
+ value: 31.518690928671965
2310
+ - type: dot_spearman
2311
+ value: 31.787757429064612
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: None
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.146
2323
+ - type: map_at_10
2324
+ value: 0.9169999999999999
2325
+ - type: map_at_100
2326
+ value: 4.661
2327
+ - type: map_at_1000
2328
+ value: 11.487
2329
+ - type: map_at_3
2330
+ value: 0.332
2331
+ - type: map_at_5
2332
+ value: 0.503
2333
+ - type: mrr_at_1
2334
+ value: 54.0
2335
+ - type: mrr_at_10
2336
+ value: 66.813
2337
+ - type: mrr_at_100
2338
+ value: 67.338
2339
+ - type: mrr_at_1000
2340
+ value: 67.338
2341
+ - type: mrr_at_3
2342
+ value: 64.333
2343
+ - type: mrr_at_5
2344
+ value: 65.833
2345
+ - type: ndcg_at_1
2346
+ value: 50.0
2347
+ - type: ndcg_at_10
2348
+ value: 45.345
2349
+ - type: ndcg_at_100
2350
+ value: 34.175
2351
+ - type: ndcg_at_1000
2352
+ value: 31.346
2353
+ - type: ndcg_at_3
2354
+ value: 47.038999999999994
2355
+ - type: ndcg_at_5
2356
+ value: 47.219
2357
+ - type: precision_at_1
2358
+ value: 56.00000000000001
2359
+ - type: precision_at_10
2360
+ value: 50.0
2361
+ - type: precision_at_100
2362
+ value: 36.24
2363
+ - type: precision_at_1000
2364
+ value: 15.129999999999999
2365
+ - type: precision_at_3
2366
+ value: 52.666999999999994
2367
+ - type: precision_at_5
2368
+ value: 52.0
2369
+ - type: recall_at_1
2370
+ value: 0.146
2371
+ - type: recall_at_10
2372
+ value: 1.216
2373
+ - type: recall_at_100
2374
+ value: 7.892
2375
+ - type: recall_at_1000
2376
+ value: 30.56
2377
+ - type: recall_at_3
2378
+ value: 0.379
2379
+ - type: recall_at_5
2380
+ value: 0.61
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: None
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 2.0140000000000002
2392
+ - type: map_at_10
2393
+ value: 6.574000000000001
2394
+ - type: map_at_100
2395
+ value: 12.025
2396
+ - type: map_at_1000
2397
+ value: 13.649000000000001
2398
+ - type: map_at_3
2399
+ value: 3.5450000000000004
2400
+ - type: map_at_5
2401
+ value: 4.903
2402
+ - type: mrr_at_1
2403
+ value: 28.571
2404
+ - type: mrr_at_10
2405
+ value: 40.943000000000005
2406
+ - type: mrr_at_100
2407
+ value: 42.535000000000004
2408
+ - type: mrr_at_1000
2409
+ value: 42.535000000000004
2410
+ - type: mrr_at_3
2411
+ value: 37.075
2412
+ - type: mrr_at_5
2413
+ value: 38.81
2414
+ - type: ndcg_at_1
2415
+ value: 27.551
2416
+ - type: ndcg_at_10
2417
+ value: 19.471
2418
+ - type: ndcg_at_100
2419
+ value: 32.823
2420
+ - type: ndcg_at_1000
2421
+ value: 44.644
2422
+ - type: ndcg_at_3
2423
+ value: 21.255
2424
+ - type: ndcg_at_5
2425
+ value: 21.438
2426
+ - type: precision_at_1
2427
+ value: 28.571
2428
+ - type: precision_at_10
2429
+ value: 17.347
2430
+ - type: precision_at_100
2431
+ value: 7.5920000000000005
2432
+ - type: precision_at_1000
2433
+ value: 1.508
2434
+ - type: precision_at_3
2435
+ value: 21.088
2436
+ - type: precision_at_5
2437
+ value: 21.633
2438
+ - type: recall_at_1
2439
+ value: 2.0140000000000002
2440
+ - type: recall_at_10
2441
+ value: 11.748
2442
+ - type: recall_at_100
2443
+ value: 46.436
2444
+ - type: recall_at_1000
2445
+ value: 82.16799999999999
2446
+ - type: recall_at_3
2447
+ value: 4.4990000000000006
2448
+ - type: recall_at_5
2449
+ value: 7.423
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: None
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 70.5234
2461
+ - type: ap
2462
+ value: 14.633576385764599
2463
+ - type: f1
2464
+ value: 54.63581892147792
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: None
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 56.57894736842105
2476
+ - type: f1
2477
+ value: 56.73891238797681
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: None
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 38.4061559598505
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: None
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 82.92900995410383
2500
+ - type: cos_sim_ap
2501
+ value: 62.43405323490786
2502
+ - type: cos_sim_f1
2503
+ value: 60.06760019314341
2504
+ - type: cos_sim_precision
2505
+ value: 55.36270582999555
2506
+ - type: cos_sim_recall
2507
+ value: 65.64643799472294
2508
+ - type: dot_accuracy
2509
+ value: 82.92900995410383
2510
+ - type: dot_ap
2511
+ value: 62.43405323490786
2512
+ - type: dot_f1
2513
+ value: 60.06760019314341
2514
+ - type: dot_precision
2515
+ value: 55.36270582999555
2516
+ - type: dot_recall
2517
+ value: 65.64643799472294
2518
+ - type: euclidean_accuracy
2519
+ value: 82.92900995410383
2520
+ - type: euclidean_ap
2521
+ value: 62.43405323490786
2522
+ - type: euclidean_f1
2523
+ value: 60.06760019314341
2524
+ - type: euclidean_precision
2525
+ value: 55.36270582999555
2526
+ - type: euclidean_recall
2527
+ value: 65.64643799472294
2528
+ - type: manhattan_accuracy
2529
+ value: 82.14221851344102
2530
+ - type: manhattan_ap
2531
+ value: 60.311627003336824
2532
+ - type: manhattan_f1
2533
+ value: 58.30150527971243
2534
+ - type: manhattan_precision
2535
+ value: 50.762910798122064
2536
+ - type: manhattan_recall
2537
+ value: 68.46965699208444
2538
+ - type: max_accuracy
2539
+ value: 82.92900995410383
2540
+ - type: max_ap
2541
+ value: 62.43405323490786
2542
+ - type: max_f1
2543
+ value: 60.06760019314341
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: None
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 87.08813598789149
2555
+ - type: cos_sim_ap
2556
+ value: 82.16719168081325
2557
+ - type: cos_sim_f1
2558
+ value: 74.65280302479458
2559
+ - type: cos_sim_precision
2560
+ value: 70.71910731505717
2561
+ - type: cos_sim_recall
2562
+ value: 79.04989220819218
2563
+ - type: dot_accuracy
2564
+ value: 87.08813598789149
2565
+ - type: dot_ap
2566
+ value: 82.16719168228374
2567
+ - type: dot_f1
2568
+ value: 74.65280302479458
2569
+ - type: dot_precision
2570
+ value: 70.71910731505717
2571
+ - type: dot_recall
2572
+ value: 79.04989220819218
2573
+ - type: euclidean_accuracy
2574
+ value: 87.08813598789149
2575
+ - type: euclidean_ap
2576
+ value: 82.16720008129118
2577
+ - type: euclidean_f1
2578
+ value: 74.65280302479458
2579
+ - type: euclidean_precision
2580
+ value: 70.71910731505717
2581
+ - type: euclidean_recall
2582
+ value: 79.04989220819218
2583
+ - type: manhattan_accuracy
2584
+ value: 87.16963558039352
2585
+ - type: manhattan_ap
2586
+ value: 82.17943816238372
2587
+ - type: manhattan_f1
2588
+ value: 74.91245171305823
2589
+ - type: manhattan_precision
2590
+ value: 70.52545714091497
2591
+ - type: manhattan_recall
2592
+ value: 79.88142901139513
2593
+ - type: max_accuracy
2594
+ value: 87.16963558039352
2595
+ - type: max_ap
2596
+ value: 82.17943816238372
2597
+ - type: max_f1
2598
+ value: 74.91245171305823
2599
+ ---