Model save
Browse files- README.md +12 -12
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 1.0 | 490 | 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8649122807017544
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8885169927909372
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8765557531115061
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9821930095431353
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0679
|
48 |
+
- Precision: 0.8649
|
49 |
+
- Recall: 0.8885
|
50 |
+
- F1: 0.8766
|
51 |
+
- Accuracy: 0.9822
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 490 | 0.0795 | 0.8185 | 0.7907 | 0.8043 | 0.9753 |
|
83 |
+
| 0.1925 | 2.0 | 980 | 0.0683 | 0.8475 | 0.8602 | 0.8538 | 0.9803 |
|
84 |
+
| 0.0422 | 3.0 | 1470 | 0.0679 | 0.8649 | 0.8885 | 0.8766 | 0.9822 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 433438310
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52d23f52b27db44bf709602cec62ada6f7fe023b6fdb20aaa14b76daaa7ac9d7
|
3 |
size 433438310
|