Commit
·
5bd2c00
1
Parent(s):
feba4b3
Initial commit
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1619.40 +/- 156.98
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df655b3e7c7155b8e4923dcfa6d418b6bcb93d22703b45fa682ec083170369ca
|
3 |
+
size 129193
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7c7f39680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7c7f39710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7c7f397a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7c7f39830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe7c7f398c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe7c7f39950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7c7f399e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe7c7f39a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7c7f39b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7c7f39b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7c7f39c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe7c7f86840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1661862186.4865782,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA0LI7v8J7aD+UucA+QuWmP5/7AECR8rG/Zo2jPpkSUD6cYjY//TxIvZboD7/h0oM/PImMPwQ4/z4GMqU+fsdQPuK6kT84UzC+N7PPPm/vlD+Bl0W/BCxBP6YIB78sg3q/cliJv9+v/j5OiQ0/RCWDP1OAh711BGc/LF3CPu+brj9US7g+gLgMv5ydQj8qzto92zeFP6z/GUCNOiw/66YRPy/Vp79SpGA9oFqbvuM13b+SydO+H9ERPpEcFz8WUdE/lAgnv8bG6T+grFa/L2kMPrGUbj/uqADATokNPxjceb8OMHa+PKQtvNOKED9yQV4/Grknv+1nOb2ocDQ+YLqdvkgRKT8Olbs+iXZsPjNUa79ax5G/Bhz8PjxxPb7K5gk/YAbQvkLu2b3YHx8/kfu6vtRQIL/gAN8+FY3nvr4KwT+xlG4/36/+Pk6JDT8Y3Hm/VomLv5zSt77H0vI+nJ+bv8NIvz1GbUS+L5lPvgFHzT82XWg/e0XkPWBgZL/Hx5E9BMShvyFNpz4yugw/gOapv1qHy79uSsm/WAAvP6cIybveCQq/F18IPnTYIr8jdlI8sZRuP+6oAMA5hOe/RCWDP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAOZCp7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDM7wU+AAAAAIC7+L8AAAAAPBRpvQAAAACmLgFAAAAAANLMCr4AAAAApPfwPwAAAAAPk+C9AAAAANsn678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1f6I2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgxIJvgAAAACkr/y/AAAAAF5dn70AAAAAMengPwAAAACTW5Y9AAAAAKzP5D8AAAAA9wCZvQAAAAAO4dq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQvp9tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ0/djwAAAAA1PXxvwAAAABBH769AAAAABF73D8AAAAALHuQPQAAAADWkfs/AAAAAEZe+j0AAAAAyTPtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwdCbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICDJMY7AAAAAKei/78AAAAA/FHGvQAAAACZH/w/AAAAAF0Oub0AAAAA9eDiPwAAAAARXt29AAAAABMr378AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpm+aWom5WMAWyUTegDjAF0lEdAqEZxWYF7lnV9lChoBkdAnZuOqioKlmgHTegDaAhHQKhG0c0cfeV1fZQoaAZHQJycb0Dlo11oB03oA2gIR0CoSDHLidaudX2UKGgGR0CedI1uivgWaAdN6ANoCEdAqFBos9SuQ3V9lChoBkdAlqZl/MGHHmgHTegDaAhHQKhTKeyRjjJ1fZQoaAZHQJtOs2wV0tBoB03oA2gIR0CoU4oOH310dX2UKGgGR0CaYJmTkhicaAdN6ANoCEdAqFTpFLFn7HV9lChoBkdAnwd4JE6T4mgHTegDaAhHQKhdMdVea8Z1fZQoaAZHQJJ9s5T6zmhoB03oA2gIR0CoX+7JnxrjdX2UKGgGR0Ccmf7MxGlRaAdN6ANoCEdAqGBRGe+VT3V9lChoBkdAnpqcOby6MGgHTegDaAhHQKhhu51/2Cd1fZQoaAZHQJ9S7StvGZNoB03oA2gIR0CoaeMoMKCydX2UKGgGR0CfdfqvNeMRaAdN6ANoCEdAqGymPo3aSXV9lChoBkdAlHoL08NhE2gHTegDaAhHQKhtAySmqHZ1fZQoaAZHQJt0gxcmjTNoB03oA2gIR0CobmwrDqGDdX2UKGgGR0CWsW8e0XxfaAdN6ANoCEdAqHa8wco6S3V9lChoBkdAk+djdYW+G2gHTegDaAhHQKh5hfKISDh1fZQoaAZHQJVP35O8CgdoB03oA2gIR0CoeebCrLhadX2UKGgGR0CWUpQU5+6RaAdN6ANoCEdAqHs7fP5YYHV9lChoBkdAn4KiJXQtz2gHTegDaAhHQKiDeSVW0Z51fZQoaAZHQJuWk9kjHGVoB03oA2gIR0Cohjah6By0dX2UKGgGR0Cd2dEX+ERKaAdN6ANoCEdAqIaTfP5YYHV9lChoBkdAmdsDC1qnFmgHTegDaAhHQKiH8nfl6qt1fZQoaAZHQJkeIVN5+phoB03oA2gIR0CokG2CVbA2dX2UKGgGR0CYfIHHFPznaAdN6ANoCEdAqJM9ARkEtHV9lChoBkdAl0XZEYwZfmgHTegDaAhHQKiTnV3ljmV1fZQoaAZHQJZFjn9vS+hoB03oA2gIR0ColQ9Vea8ZdX2UKGgGR0B5zWYoiLVGaAdNTgFoCEdAqJeQ+OfdynV9lChoBkdAkMHkzCUHIWgHTegDaAhHQKidRM9KVY91fZQoaAZHQJxzpQj2SMdoB03oA2gIR0CooGzLW7OFdX2UKGgGR0CcASWbPQfIaAdN6ANoCEdAqKHRyKekHnV9lChoBkdAmkS9o8IRiGgHTegDaAhHQKikRxI8QqZ1fZQoaAZHQH9yihrWRRxoB03oA2gIR0CoqfLSuyNXdX2UKGgGR0CYY36lchTwaAdN6ANoCEdAqK0JZ4fOlnV9lChoBkdAmIEiBf8dgmgHTegDaAhHQKiuasqaw2V1fZQoaAZHQJkyjTH80k5oB03oA2gIR0CosOPiT+vRdX2UKGgGR0CWvqSt/4IsaAdN6ANoCEdAqLaSs+3YtnV9lChoBkdAlsgfKMefZmgHTegDaAhHQKi5sWk8A7x1fZQoaAZHQJuj0kHD765oB03oA2gIR0Coux2hysCDdX2UKGgGR0Ca39hjOLR8aAdN6ANoCEdAqL2WhZha1XV9lChoBkdAnpc3VbzK92gHTegDaAhHQKjDWNp/PPd1fZQoaAZHQJ86EqZtvXNoB03oA2gIR0CoxmwqiGnGdX2UKGgGR0Cdljeb/ffoaAdN6ANoCEdAqMfRkZrHl3V9lChoBkdAoD+JPoFFD2gHTegDaAhHQKjKYCf6Gg11fZQoaAZHQJ7DnuXu3MJoB03oA2gIR0Co0ATHjp9rdX2UKGgGR0Cbde4SHuZ1aAdN6ANoCEdAqNMeYF7laXV9lChoBkdAnRk5HNHH3mgHTegDaAhHQKjUfCiRGMJ1fZQoaAZHQJ4Blc7hegNoB03oA2gIR0Co1vqIacZtdX2UKGgGR0CgXJ2EK3NLaAdN6ANoCEdAqNy3ljmSyXV9lChoBkdAks9FYyO7x2gHTegDaAhHQKjf1LKV6eJ1fZQoaAZHQJ5+qKiwjdJoB03oA2gIR0Co4TGiQDFIdX2UKGgGR0CgrKVh9b5eaAdN6ANoCEdAqOO0MiKR+3V9lChoBkdAnVnOoYNy52gHTegDaAhHQKjpbm4Ajpt1fZQoaAZHQJ3/0mplz2hoB03oA2gIR0Co7KV27nPndX2UKGgGR0CblTO/cnE3aAdN6ANoCEdAqO4NKqXF+HV9lChoBkdAnU2VlkH2RWgHTegDaAhHQKjwiCYCyQh1fZQoaAZHQJqBcXSBshxoB03oA2gIR0Co9oGzKLbYdX2UKGgGR0CexgTwUg0TaAdN6ANoCEdAqPmwMnZ00XV9lChoBkdAnogQR9PUKGgHTegDaAhHQKj7LUc4o7V1fZQoaAZHQJ+cacwxnFpoB03oA2gIR0Co/hMQEpy7dX2UKGgGR0CZv5A/s3Q2aAdN6ANoCEdAqQS9jAi3X3V9lChoBkdAmSAMewLVnWgHTegDaAhHQKkH5joZAIJ1fZQoaAZHQJ3yRPIn0CloB03oA2gIR0CpCUt4RmK7dX2UKGgGR0CeUkMJx//eaAdN6ANoCEdAqQvL3fyf+XV9lChoBkdAn56XMQmNR2gHTegDaAhHQKkReOaOPvN1fZQoaAZHQJ3xovYe1a5oB03oA2gIR0CpFI5QP7N0dX2UKGgGR0CfWixTbWVeaAdN6ANoCEdAqRXx0IToMnV9lChoBkdAnna9Mj/uLWgHTegDaAhHQKkYdK1XvH91fZQoaAZHQJ8OYaFVT75oB03oA2gIR0CpHiVfu1F6dX2UKGgGR0CflBFOO802aAdN6ANoCEdAqSFEsg+yJXV9lChoBkdAn92lzQu27WgHTegDaAhHQKkiom+j/Mp1fZQoaAZHQJzBmxu89OhoB03oA2gIR0CpJRY2Kl54dX2UKGgGR0Ce+n1TR6WxaAdN6ANoCEdAqSrGGCZnc3V9lChoBkdAnd/qbF0gbWgHTegDaAhHQKkt1nBciW51fZQoaAZHQJ3ZNl/YraxoB03oA2gIR0CpLy63AmAtdX2UKGgGR0Cc4ANZeRgaaAdN6ANoCEdAqTG2jIq9XnV9lChoBkdAoEa7V6NVBGgHTegDaAhHQKk3U6d1+y91fZQoaAZHQJ2LYOYplSVoB03oA2gIR0CpOmmy5Zr6dX2UKGgGR0CZd1cQyylfaAdN6ANoCEdAqTu/QpnYhHV9lChoBkdAn6ozxXnyNGgHTegDaAhHQKk+ITufEn91fZQoaAZHQJ15hNmDlHVoB03oA2gIR0CpQ845Lh73dX2UKGgGR0CfB6cGkep5aAdN6ANoCEdAqUbPUhFEzHV9lChoBkdAnKzz8UEgXGgHTegDaAhHQKlIKlkYoAp1fZQoaAZHQJsWcS7GvOhoB03oA2gIR0CpSsdAood/dX2UKGgGR0CZqDc1wYLtaAdN6ANoCEdAqVCiMWGh3HV9lChoBkdAno4rKaG5+mgHTegDaAhHQKlTwUoKD011fZQoaAZHQJuV940Mw11oB03oA2gIR0CpVSmVJL/TdX2UKGgGR0Cbz2fmLcbjaAdN6ANoCEdAqVefpwCKaXV9lChoBkdAnVWyoKlYU2gHTegDaAhHQKldaEB8x9J1fZQoaAZHQJxW653C9AZoB03oA2gIR0CpYJVpsXSCdX2UKGgGR0CeQFZ9/jKgaAdN6ANoCEdAqWIDcEeQuHV9lChoBkdAmSRyQo1DSmgHTegDaAhHQKlki+MZP2x1fZQoaAZHQJdjktz0Yj1oB03oA2gIR0Cpajsnqmj1dX2UKGgGR0CgWcQCKaXsaAdN6ANoCEdAqW12LYPGyXV9lChoBkdAnrg6xHG0eGgHTegDaAhHQKlu9l3hXKd1fZQoaAZHQJzKkd6sySFoB03oA2gIR0CpcXj/EOy3dX2UKGgGR0CXoylJYkmhaAdN6ANoCEdAqXerhxYJV3V9lChoBkdAoQJV0knkUGgHTegDaAhHQKl64voNd7h1fZQoaAZHQJ0kQwIt16poB03oA2gIR0CpfEPA44p+dX2UKGgGR0CfU3Phhpg1aAdN6ANoCEdAqX7XShJyyXVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f616b9245cf0247a009dfb48e1bac66076878e2477800147933df73d0a599db
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6650999175b5e75e500e59000f29a67c1fc9cb6fbb1aecbd1842cc174de5e7da
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7c7f39680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7c7f39710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7c7f397a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7c7f39830>", "_build": "<function ActorCriticPolicy._build at 0x7fe7c7f398c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe7c7f39950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7c7f399e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe7c7f39a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7c7f39b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7c7f39b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7c7f39c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe7c7f86840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661862186.4865782, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA0LI7v8J7aD+UucA+QuWmP5/7AECR8rG/Zo2jPpkSUD6cYjY//TxIvZboD7/h0oM/PImMPwQ4/z4GMqU+fsdQPuK6kT84UzC+N7PPPm/vlD+Bl0W/BCxBP6YIB78sg3q/cliJv9+v/j5OiQ0/RCWDP1OAh711BGc/LF3CPu+brj9US7g+gLgMv5ydQj8qzto92zeFP6z/GUCNOiw/66YRPy/Vp79SpGA9oFqbvuM13b+SydO+H9ERPpEcFz8WUdE/lAgnv8bG6T+grFa/L2kMPrGUbj/uqADATokNPxjceb8OMHa+PKQtvNOKED9yQV4/Grknv+1nOb2ocDQ+YLqdvkgRKT8Olbs+iXZsPjNUa79ax5G/Bhz8PjxxPb7K5gk/YAbQvkLu2b3YHx8/kfu6vtRQIL/gAN8+FY3nvr4KwT+xlG4/36/+Pk6JDT8Y3Hm/VomLv5zSt77H0vI+nJ+bv8NIvz1GbUS+L5lPvgFHzT82XWg/e0XkPWBgZL/Hx5E9BMShvyFNpz4yugw/gOapv1qHy79uSsm/WAAvP6cIybveCQq/F18IPnTYIr8jdlI8sZRuP+6oAMA5hOe/RCWDP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAOZCp7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDM7wU+AAAAAIC7+L8AAAAAPBRpvQAAAACmLgFAAAAAANLMCr4AAAAApPfwPwAAAAAPk+C9AAAAANsn678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1f6I2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgxIJvgAAAACkr/y/AAAAAF5dn70AAAAAMengPwAAAACTW5Y9AAAAAKzP5D8AAAAA9wCZvQAAAAAO4dq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQvp9tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ0/djwAAAAA1PXxvwAAAABBH769AAAAABF73D8AAAAALHuQPQAAAADWkfs/AAAAAEZe+j0AAAAAyTPtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwdCbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICDJMY7AAAAAKei/78AAAAA/FHGvQAAAACZH/w/AAAAAF0Oub0AAAAA9eDiPwAAAAARXt29AAAAABMr378AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpm+aWom5WMAWyUTegDjAF0lEdAqEZxWYF7lnV9lChoBkdAnZuOqioKlmgHTegDaAhHQKhG0c0cfeV1fZQoaAZHQJycb0Dlo11oB03oA2gIR0CoSDHLidaudX2UKGgGR0CedI1uivgWaAdN6ANoCEdAqFBos9SuQ3V9lChoBkdAlqZl/MGHHmgHTegDaAhHQKhTKeyRjjJ1fZQoaAZHQJtOs2wV0tBoB03oA2gIR0CoU4oOH310dX2UKGgGR0CaYJmTkhicaAdN6ANoCEdAqFTpFLFn7HV9lChoBkdAnwd4JE6T4mgHTegDaAhHQKhdMdVea8Z1fZQoaAZHQJJ9s5T6zmhoB03oA2gIR0CoX+7JnxrjdX2UKGgGR0Ccmf7MxGlRaAdN6ANoCEdAqGBRGe+VT3V9lChoBkdAnpqcOby6MGgHTegDaAhHQKhhu51/2Cd1fZQoaAZHQJ9S7StvGZNoB03oA2gIR0CoaeMoMKCydX2UKGgGR0CfdfqvNeMRaAdN6ANoCEdAqGymPo3aSXV9lChoBkdAlHoL08NhE2gHTegDaAhHQKhtAySmqHZ1fZQoaAZHQJt0gxcmjTNoB03oA2gIR0CobmwrDqGDdX2UKGgGR0CWsW8e0XxfaAdN6ANoCEdAqHa8wco6S3V9lChoBkdAk+djdYW+G2gHTegDaAhHQKh5hfKISDh1fZQoaAZHQJVP35O8CgdoB03oA2gIR0CoeebCrLhadX2UKGgGR0CWUpQU5+6RaAdN6ANoCEdAqHs7fP5YYHV9lChoBkdAn4KiJXQtz2gHTegDaAhHQKiDeSVW0Z51fZQoaAZHQJuWk9kjHGVoB03oA2gIR0Cohjah6By0dX2UKGgGR0Cd2dEX+ERKaAdN6ANoCEdAqIaTfP5YYHV9lChoBkdAmdsDC1qnFmgHTegDaAhHQKiH8nfl6qt1fZQoaAZHQJkeIVN5+phoB03oA2gIR0CokG2CVbA2dX2UKGgGR0CYfIHHFPznaAdN6ANoCEdAqJM9ARkEtHV9lChoBkdAl0XZEYwZfmgHTegDaAhHQKiTnV3ljmV1fZQoaAZHQJZFjn9vS+hoB03oA2gIR0ColQ9Vea8ZdX2UKGgGR0B5zWYoiLVGaAdNTgFoCEdAqJeQ+OfdynV9lChoBkdAkMHkzCUHIWgHTegDaAhHQKidRM9KVY91fZQoaAZHQJxzpQj2SMdoB03oA2gIR0CooGzLW7OFdX2UKGgGR0CcASWbPQfIaAdN6ANoCEdAqKHRyKekHnV9lChoBkdAmkS9o8IRiGgHTegDaAhHQKikRxI8QqZ1fZQoaAZHQH9yihrWRRxoB03oA2gIR0CoqfLSuyNXdX2UKGgGR0CYY36lchTwaAdN6ANoCEdAqK0JZ4fOlnV9lChoBkdAmIEiBf8dgmgHTegDaAhHQKiuasqaw2V1fZQoaAZHQJkyjTH80k5oB03oA2gIR0CosOPiT+vRdX2UKGgGR0CWvqSt/4IsaAdN6ANoCEdAqLaSs+3YtnV9lChoBkdAlsgfKMefZmgHTegDaAhHQKi5sWk8A7x1fZQoaAZHQJuj0kHD765oB03oA2gIR0Coux2hysCDdX2UKGgGR0Ca39hjOLR8aAdN6ANoCEdAqL2WhZha1XV9lChoBkdAnpc3VbzK92gHTegDaAhHQKjDWNp/PPd1fZQoaAZHQJ86EqZtvXNoB03oA2gIR0CoxmwqiGnGdX2UKGgGR0Cdljeb/ffoaAdN6ANoCEdAqMfRkZrHl3V9lChoBkdAoD+JPoFFD2gHTegDaAhHQKjKYCf6Gg11fZQoaAZHQJ7DnuXu3MJoB03oA2gIR0Co0ATHjp9rdX2UKGgGR0Cbde4SHuZ1aAdN6ANoCEdAqNMeYF7laXV9lChoBkdAnRk5HNHH3mgHTegDaAhHQKjUfCiRGMJ1fZQoaAZHQJ4Blc7hegNoB03oA2gIR0Co1vqIacZtdX2UKGgGR0CgXJ2EK3NLaAdN6ANoCEdAqNy3ljmSyXV9lChoBkdAks9FYyO7x2gHTegDaAhHQKjf1LKV6eJ1fZQoaAZHQJ5+qKiwjdJoB03oA2gIR0Co4TGiQDFIdX2UKGgGR0CgrKVh9b5eaAdN6ANoCEdAqOO0MiKR+3V9lChoBkdAnVnOoYNy52gHTegDaAhHQKjpbm4Ajpt1fZQoaAZHQJ3/0mplz2hoB03oA2gIR0Co7KV27nPndX2UKGgGR0CblTO/cnE3aAdN6ANoCEdAqO4NKqXF+HV9lChoBkdAnU2VlkH2RWgHTegDaAhHQKjwiCYCyQh1fZQoaAZHQJqBcXSBshxoB03oA2gIR0Co9oGzKLbYdX2UKGgGR0CexgTwUg0TaAdN6ANoCEdAqPmwMnZ00XV9lChoBkdAnogQR9PUKGgHTegDaAhHQKj7LUc4o7V1fZQoaAZHQJ+cacwxnFpoB03oA2gIR0Co/hMQEpy7dX2UKGgGR0CZv5A/s3Q2aAdN6ANoCEdAqQS9jAi3X3V9lChoBkdAmSAMewLVnWgHTegDaAhHQKkH5joZAIJ1fZQoaAZHQJ3yRPIn0CloB03oA2gIR0CpCUt4RmK7dX2UKGgGR0CeUkMJx//eaAdN6ANoCEdAqQvL3fyf+XV9lChoBkdAn56XMQmNR2gHTegDaAhHQKkReOaOPvN1fZQoaAZHQJ3xovYe1a5oB03oA2gIR0CpFI5QP7N0dX2UKGgGR0CfWixTbWVeaAdN6ANoCEdAqRXx0IToMnV9lChoBkdAnna9Mj/uLWgHTegDaAhHQKkYdK1XvH91fZQoaAZHQJ8OYaFVT75oB03oA2gIR0CpHiVfu1F6dX2UKGgGR0CflBFOO802aAdN6ANoCEdAqSFEsg+yJXV9lChoBkdAn92lzQu27WgHTegDaAhHQKkiom+j/Mp1fZQoaAZHQJzBmxu89OhoB03oA2gIR0CpJRY2Kl54dX2UKGgGR0Ce+n1TR6WxaAdN6ANoCEdAqSrGGCZnc3V9lChoBkdAnd/qbF0gbWgHTegDaAhHQKkt1nBciW51fZQoaAZHQJ3ZNl/YraxoB03oA2gIR0CpLy63AmAtdX2UKGgGR0Cc4ANZeRgaaAdN6ANoCEdAqTG2jIq9XnV9lChoBkdAoEa7V6NVBGgHTegDaAhHQKk3U6d1+y91fZQoaAZHQJ2LYOYplSVoB03oA2gIR0CpOmmy5Zr6dX2UKGgGR0CZd1cQyylfaAdN6ANoCEdAqTu/QpnYhHV9lChoBkdAn6ozxXnyNGgHTegDaAhHQKk+ITufEn91fZQoaAZHQJ15hNmDlHVoB03oA2gIR0CpQ845Lh73dX2UKGgGR0CfB6cGkep5aAdN6ANoCEdAqUbPUhFEzHV9lChoBkdAnKzz8UEgXGgHTegDaAhHQKlIKlkYoAp1fZQoaAZHQJsWcS7GvOhoB03oA2gIR0CpSsdAood/dX2UKGgGR0CZqDc1wYLtaAdN6ANoCEdAqVCiMWGh3HV9lChoBkdAno4rKaG5+mgHTegDaAhHQKlTwUoKD011fZQoaAZHQJuV940Mw11oB03oA2gIR0CpVSmVJL/TdX2UKGgGR0Cbz2fmLcbjaAdN6ANoCEdAqVefpwCKaXV9lChoBkdAnVWyoKlYU2gHTegDaAhHQKldaEB8x9J1fZQoaAZHQJxW653C9AZoB03oA2gIR0CpYJVpsXSCdX2UKGgGR0CeQFZ9/jKgaAdN6ANoCEdAqWIDcEeQuHV9lChoBkdAmSRyQo1DSmgHTegDaAhHQKlki+MZP2x1fZQoaAZHQJdjktz0Yj1oB03oA2gIR0Cpajsnqmj1dX2UKGgGR0CgWcQCKaXsaAdN6ANoCEdAqW12LYPGyXV9lChoBkdAnrg6xHG0eGgHTegDaAhHQKlu9l3hXKd1fZQoaAZHQJzKkd6sySFoB03oA2gIR0CpcXj/EOy3dX2UKGgGR0CXoylJYkmhaAdN6ANoCEdAqXerhxYJV3V9lChoBkdAoQJV0knkUGgHTegDaAhHQKl64voNd7h1fZQoaAZHQJ0kQwIt16poB03oA2gIR0CpfEPA44p+dX2UKGgGR0CfU3Phhpg1aAdN6ANoCEdAqX7XShJyyXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (800 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1619.3955103320536, "std_reward": 156.9779060502235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-30T13:21:02.612086"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e554d393024644a22ad218e7e6b75813b4bc50b216e08f524e107eb34055ba75
|
3 |
+
size 2763
|