tuanluong105 commited on
Commit
c3517ce
·
verified ·
1 Parent(s): b6c3ae5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +284 -0
README.md ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ace
4
+ - acm
5
+ - acq
6
+ - aeb
7
+ - af
8
+ - ajp
9
+ - ak
10
+ - als
11
+ - am
12
+ - apc
13
+ - ar
14
+ - ars
15
+ - ary
16
+ - arz
17
+ - as
18
+ - ast
19
+ - awa
20
+ - ayr
21
+ - azb
22
+ - azj
23
+ - ba
24
+ - bm
25
+ - ban
26
+ - be
27
+ - bem
28
+ - bn
29
+ - bho
30
+ - bjn
31
+ - bo
32
+ - bs
33
+ - bug
34
+ - bg
35
+ - ca
36
+ - ceb
37
+ - cs
38
+ - cjk
39
+ - ckb
40
+ - crh
41
+ - cy
42
+ - da
43
+ - de
44
+ - dik
45
+ - dyu
46
+ - dz
47
+ - el
48
+ - en
49
+ - eo
50
+ - et
51
+ - eu
52
+ - ee
53
+ - fo
54
+ - fj
55
+ - fi
56
+ - fon
57
+ - fr
58
+ - fur
59
+ - fuv
60
+ - gaz
61
+ - gd
62
+ - ga
63
+ - gl
64
+ - gn
65
+ - gu
66
+ - ht
67
+ - ha
68
+ - he
69
+ - hi
70
+ - hne
71
+ - hr
72
+ - hu
73
+ - hy
74
+ - ig
75
+ - ilo
76
+ - id
77
+ - is
78
+ - it
79
+ - jv
80
+ - ja
81
+ - kab
82
+ - kac
83
+ - kam
84
+ - kn
85
+ - ks
86
+ - ka
87
+ - kk
88
+ - kbp
89
+ - kea
90
+ - khk
91
+ - km
92
+ - ki
93
+ - rw
94
+ - ky
95
+ - kmb
96
+ - kmr
97
+ - knc
98
+ - kg
99
+ - ko
100
+ - lo
101
+ - lij
102
+ - li
103
+ - ln
104
+ - lt
105
+ - lmo
106
+ - ltg
107
+ - lb
108
+ - lua
109
+ - lg
110
+ - luo
111
+ - lus
112
+ - lvs
113
+ - mag
114
+ - mai
115
+ - ml
116
+ - mar
117
+ - min
118
+ - mk
119
+ - mt
120
+ - mni
121
+ - mos
122
+ - mi
123
+ - my
124
+ - nl
125
+ - nn
126
+ - nb
127
+ - npi
128
+ - nso
129
+ - nus
130
+ - ny
131
+ - oc
132
+ - ory
133
+ - pag
134
+ - pa
135
+ - pap
136
+ - pbt
137
+ - pes
138
+ - plt
139
+ - pl
140
+ - pt
141
+ - prs
142
+ - quy
143
+ - ro
144
+ - rn
145
+ - ru
146
+ - sg
147
+ - sa
148
+ - sat
149
+ - scn
150
+ - shn
151
+ - si
152
+ - sk
153
+ - sl
154
+ - sm
155
+ - sn
156
+ - sd
157
+ - so
158
+ - st
159
+ - es
160
+ - sc
161
+ - sr
162
+ - ss
163
+ - su
164
+ - sv
165
+ - swh
166
+ - szl
167
+ - ta
168
+ - taq
169
+ - tt
170
+ - te
171
+ - tg
172
+ - tl
173
+ - th
174
+ - ti
175
+ - tpi
176
+ - tn
177
+ - ts
178
+ - tk
179
+ - tum
180
+ - tr
181
+ - tw
182
+ - tzm
183
+ - ug
184
+ - uk
185
+ - umb
186
+ - ur
187
+ - uzn
188
+ - vec
189
+ - vi
190
+ - war
191
+ - wo
192
+ - xh
193
+ - ydd
194
+ - yo
195
+ - yue
196
+ - zh
197
+ - zsm
198
+ - zu
199
+ license: cc-by-nc-4.0
200
+ library_name: Transformers PHP
201
+ tags:
202
+ - nllb
203
+ - onnx
204
+ datasets:
205
+ - flores-200
206
+ metrics:
207
+ - bleu
208
+ - spbleu
209
+ - chrf++
210
+ language_details: ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab,
211
+ aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab, asm_Beng,
212
+ ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl, bam_Latn, ban_Latn,bel_Cyrl,
213
+ bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn, bod_Tibt, bos_Latn, bug_Latn,
214
+ bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn, cym_Latn,
215
+ dan_Latn, deu_Latn, dik_Latn, dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn,
216
+ est_Latn, eus_Latn, ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn,
217
+ fra_Latn, fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr,
218
+ hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, hye_Armn,
219
+ ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kab_Latn,
220
+ kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva, kat_Geor, knc_Arab, knc_Latn,
221
+ kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr, kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn,
222
+ kon_Latn, kor_Hang, kmr_Latn, lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn,
223
+ lit_Latn, lmo_Latn, ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn,
224
+ mag_Deva, mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn,
225
+ mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn, nno_Latn,
226
+ nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn, gaz_Latn, ory_Orya,
227
+ pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn, prs_Arab, pbt_Arab, quy_Latn,
228
+ ron_Latn, run_Latn, rus_Cyrl, sag_Latn, san_Deva, sat_Beng, scn_Latn, shn_Mymr,
229
+ sin_Sinh, slk_Latn, slv_Latn, smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn,
230
+ spa_Latn, als_Latn, srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn,
231
+ szl_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi,
232
+ taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, tur_Latn,
233
+ twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab, uzn_Latn, vec_Latn,
234
+ vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr, yor_Latn, yue_Hant, zho_Hans,
235
+ zho_Hant, zul_Latn
236
+ pipeline_tag: translation
237
+ inference: false
238
+ ---
239
+
240
+ https://huggingface.co/facebook/nllb-200-distilled-600M with ONNX weights to be compatible with Transformers PHP
241
+
242
+
243
+ # NLLB-200
244
+
245
+ This is the model card of NLLB-200's distilled 600M variant.
246
+
247
+ Here are the [metrics](https://tinyurl.com/nllb200densedst600mmetrics) for that particular checkpoint.
248
+
249
+ - Information about training algorithms, parameters, fairness constraints or other applied approaches, and features. The exact training algorithm, data and the strategies to handle data imbalances for high and low resource languages that were used to train NLLB-200 is described in the paper.
250
+ - Paper or other resource for more information NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv, 2022
251
+ - License: CC-BY-NC
252
+ - Where to send questions or comments about the model: https://github.com/facebookresearch/fairseq/issues
253
+
254
+
255
+
256
+ ## Intended Use
257
+ - Primary intended uses: NLLB-200 is a machine translation model primarily intended for research in machine translation, - especially for low-resource languages. It allows for single sentence translation among 200 languages. Information on how to - use the model can be found in Fairseq code repository along with the training code and references to evaluation and training data.
258
+ - Primary intended users: Primary users are researchers and machine translation research community.
259
+ - Out-of-scope use cases: NLLB-200 is a research model and is not released for production deployment. NLLB-200 is trained on general domain text data and is not intended to be used with domain specific texts, such as medical domain or legal domain. The model is not intended to be used for document translation. The model was trained with input lengths not exceeding 512 tokens, therefore translating longer sequences might result in quality degradation. NLLB-200 translations can not be used as certified translations.
260
+
261
+ ## Metrics
262
+ • Model performance measures: NLLB-200 model was evaluated using BLEU, spBLEU, and chrF++ metrics widely adopted by machine translation community. Additionally, we performed human evaluation with the XSTS protocol and measured the toxicity of the generated translations.
263
+
264
+
265
+ ## Evaluation Data
266
+ - Datasets: Flores-200 dataset is described in Section 4
267
+ - Motivation: We used Flores-200 as it provides full evaluation coverage of the languages in NLLB-200
268
+ - Preprocessing: Sentence-split raw text data was preprocessed using SentencePiece. The
269
+ SentencePiece model is released along with NLLB-200.
270
+
271
+ ## Training Data
272
+ • We used parallel multilingual data from a variety of sources to train the model. We provide detailed report on data selection and construction process in Section 5 in the paper. We also used monolingual data constructed from Common Crawl. We provide more details in Section 5.2.
273
+
274
+ ## Ethical Considerations
275
+ • In this work, we took a reflexive approach in technological development to ensure that we prioritize human users and minimize risks that could be transferred to them. While we reflect on our ethical considerations throughout the article, here are some additional points to highlight. For one, many languages chosen for this study are low-resource languages, with a heavy emphasis on African languages. While quality translation could improve education and information access in many in these communities, such an access could also make groups with lower levels of digital literacy more vulnerable to misinformation or online scams. The latter scenarios could arise if bad actors misappropriate our work for nefarious activities, which we conceive as an example of unintended use. Regarding data acquisition, the training data used for model development were mined from various publicly available sources on the web. Although we invested heavily in data cleaning, personally identifiable information may not be entirely eliminated. Finally, although we did our best to optimize for translation quality, mistranslations produced by the model could remain. Although the odds are low, this could have adverse impact on those who rely on these translations to make important decisions (particularly when related to health and safety).
276
+
277
+ ## Caveats and Recommendations
278
+ • Our model has been tested on the Wikimedia domain with limited investigation on other domains supported in NLLB-MD. In addition, the supported languages may have variations that our model is not capturing. Users should make appropriate assessments.
279
+
280
+ ## Carbon Footprint Details
281
+ • The carbon dioxide (CO2e) estimate is reported in Section 8.8.
282
+ ---
283
+
284
+ Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).