trinhxuankhai commited on
Commit
d65492c
·
verified ·
1 Parent(s): 0a872bf

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen-VL-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen-VL-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "w2",
23
+ "attn.c_proj",
24
+ "c_attn",
25
+ "w1"
26
+ ],
27
+ "task_type": "CAUSAL_LM",
28
+ "use_rslora": false
29
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce368bfea257d10d17e0b7d7ae0236cb98f610ac88577c1bc4312dd05d32517b
3
+ size 224482573
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "clean_up_tokenization_spaces": true,
9
+ "model_max_length": 1024,
10
+ "padding_side": "right",
11
+ "tokenizer_class": "QWenTokenizer"
12
+ }
trainer_state.json ADDED
@@ -0,0 +1,952 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.7650397419929504,
3
+ "best_model_checkpoint": "ckpt/origin/pedes_location_v2/checkpoint-91",
4
+ "epoch": 4.859813084112149,
5
+ "eval_steps": 7,
6
+ "global_step": 130,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04,
13
+ "learning_rate": 5e-06,
14
+ "loss": 1.0785,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.07,
19
+ "learning_rate": 1e-05,
20
+ "loss": 1.0074,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.11,
25
+ "learning_rate": 9.998494093481022e-06,
26
+ "loss": 0.9961,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.15,
31
+ "learning_rate": 9.993977281025862e-06,
32
+ "loss": 1.0135,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.19,
37
+ "learning_rate": 9.986452283393452e-06,
38
+ "loss": 0.9407,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.22,
43
+ "learning_rate": 9.975923633360985e-06,
44
+ "loss": 0.9739,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.26,
49
+ "learning_rate": 9.962397672993552e-06,
50
+ "loss": 0.9871,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.26,
55
+ "eval_loss": 0.8237647414207458,
56
+ "eval_runtime": 37.148,
57
+ "eval_samples_per_second": 1.911,
58
+ "eval_steps_per_second": 1.911,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.3,
63
+ "learning_rate": 9.945882549823906e-06,
64
+ "loss": 1.0363,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.34,
69
+ "learning_rate": 9.926388211944707e-06,
70
+ "loss": 0.954,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.37,
75
+ "learning_rate": 9.903926402016153e-06,
76
+ "loss": 0.9186,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.41,
81
+ "learning_rate": 9.878510650192644e-06,
82
+ "loss": 0.8576,
83
+ "step": 11
84
+ },
85
+ {
86
+ "epoch": 0.45,
87
+ "learning_rate": 9.850156265972722e-06,
88
+ "loss": 0.9378,
89
+ "step": 12
90
+ },
91
+ {
92
+ "epoch": 0.49,
93
+ "learning_rate": 9.8188803289772e-06,
94
+ "loss": 0.8016,
95
+ "step": 13
96
+ },
97
+ {
98
+ "epoch": 0.52,
99
+ "learning_rate": 9.784701678661045e-06,
100
+ "loss": 0.8307,
101
+ "step": 14
102
+ },
103
+ {
104
+ "epoch": 0.52,
105
+ "eval_loss": 0.8120225071907043,
106
+ "eval_runtime": 36.7585,
107
+ "eval_samples_per_second": 1.932,
108
+ "eval_steps_per_second": 1.932,
109
+ "step": 14
110
+ },
111
+ {
112
+ "epoch": 0.56,
113
+ "learning_rate": 9.747640902965185e-06,
114
+ "loss": 0.9499,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.6,
119
+ "learning_rate": 9.707720325915105e-06,
120
+ "loss": 0.92,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.64,
125
+ "learning_rate": 9.664963994173695e-06,
126
+ "loss": 0.8689,
127
+ "step": 17
128
+ },
129
+ {
130
+ "epoch": 0.67,
131
+ "learning_rate": 9.619397662556434e-06,
132
+ "loss": 0.9116,
133
+ "step": 18
134
+ },
135
+ {
136
+ "epoch": 0.71,
137
+ "learning_rate": 9.571048778517655e-06,
138
+ "loss": 0.8537,
139
+ "step": 19
140
+ },
141
+ {
142
+ "epoch": 0.75,
143
+ "learning_rate": 9.519946465617217e-06,
144
+ "loss": 0.8569,
145
+ "step": 20
146
+ },
147
+ {
148
+ "epoch": 0.79,
149
+ "learning_rate": 9.466121505977577e-06,
150
+ "loss": 0.9572,
151
+ "step": 21
152
+ },
153
+ {
154
+ "epoch": 0.79,
155
+ "eval_loss": 0.8014978170394897,
156
+ "eval_runtime": 36.792,
157
+ "eval_samples_per_second": 1.93,
158
+ "eval_steps_per_second": 1.93,
159
+ "step": 21
160
+ },
161
+ {
162
+ "epoch": 0.82,
163
+ "learning_rate": 9.409606321741776e-06,
164
+ "loss": 0.7823,
165
+ "step": 22
166
+ },
167
+ {
168
+ "epoch": 0.86,
169
+ "learning_rate": 9.350434955543557e-06,
170
+ "loss": 0.8996,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.9,
175
+ "learning_rate": 9.288643050001362e-06,
176
+ "loss": 0.8973,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.93,
181
+ "learning_rate": 9.224267826248536e-06,
182
+ "loss": 0.8862,
183
+ "step": 25
184
+ },
185
+ {
186
+ "epoch": 0.97,
187
+ "learning_rate": 9.157348061512728e-06,
188
+ "loss": 0.9096,
189
+ "step": 26
190
+ },
191
+ {
192
+ "epoch": 1.01,
193
+ "learning_rate": 9.08792406575792e-06,
194
+ "loss": 0.8754,
195
+ "step": 27
196
+ },
197
+ {
198
+ "epoch": 1.05,
199
+ "learning_rate": 9.016037657403225e-06,
200
+ "loss": 0.8163,
201
+ "step": 28
202
+ },
203
+ {
204
+ "epoch": 1.05,
205
+ "eval_loss": 0.7943388819694519,
206
+ "eval_runtime": 36.78,
207
+ "eval_samples_per_second": 1.93,
208
+ "eval_steps_per_second": 1.93,
209
+ "step": 28
210
+ },
211
+ {
212
+ "epoch": 1.08,
213
+ "learning_rate": 8.941732138133032e-06,
214
+ "loss": 0.8693,
215
+ "step": 29
216
+ },
217
+ {
218
+ "epoch": 1.12,
219
+ "learning_rate": 8.865052266813686e-06,
220
+ "loss": 0.825,
221
+ "step": 30
222
+ },
223
+ {
224
+ "epoch": 1.16,
225
+ "learning_rate": 8.786044232532423e-06,
226
+ "loss": 0.8679,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 1.2,
231
+ "learning_rate": 8.704755626774796e-06,
232
+ "loss": 0.8532,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 1.23,
237
+ "learning_rate": 8.621235414757337e-06,
238
+ "loss": 0.843,
239
+ "step": 33
240
+ },
241
+ {
242
+ "epoch": 1.27,
243
+ "learning_rate": 8.535533905932739e-06,
244
+ "loss": 0.7849,
245
+ "step": 34
246
+ },
247
+ {
248
+ "epoch": 1.31,
249
+ "learning_rate": 8.447702723685335e-06,
250
+ "loss": 0.8735,
251
+ "step": 35
252
+ },
253
+ {
254
+ "epoch": 1.31,
255
+ "eval_loss": 0.7872768640518188,
256
+ "eval_runtime": 36.778,
257
+ "eval_samples_per_second": 1.93,
258
+ "eval_steps_per_second": 1.93,
259
+ "step": 35
260
+ },
261
+ {
262
+ "epoch": 1.35,
263
+ "learning_rate": 8.357794774235094e-06,
264
+ "loss": 0.8562,
265
+ "step": 36
266
+ },
267
+ {
268
+ "epoch": 1.38,
269
+ "learning_rate": 8.265864214768883e-06,
270
+ "loss": 0.7895,
271
+ "step": 37
272
+ },
273
+ {
274
+ "epoch": 1.42,
275
+ "learning_rate": 8.171966420818227e-06,
276
+ "loss": 0.9451,
277
+ "step": 38
278
+ },
279
+ {
280
+ "epoch": 1.46,
281
+ "learning_rate": 8.076157952903134e-06,
282
+ "loss": 0.9048,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 1.5,
287
+ "learning_rate": 7.978496522462167e-06,
288
+ "loss": 0.9119,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 1.53,
293
+ "learning_rate": 7.879040957089229e-06,
294
+ "loss": 0.8287,
295
+ "step": 41
296
+ },
297
+ {
298
+ "epoch": 1.57,
299
+ "learning_rate": 7.777851165098012e-06,
300
+ "loss": 0.8644,
301
+ "step": 42
302
+ },
303
+ {
304
+ "epoch": 1.57,
305
+ "eval_loss": 0.7796598672866821,
306
+ "eval_runtime": 36.8039,
307
+ "eval_samples_per_second": 1.929,
308
+ "eval_steps_per_second": 1.929,
309
+ "step": 42
310
+ },
311
+ {
312
+ "epoch": 1.61,
313
+ "learning_rate": 7.674988099435487e-06,
314
+ "loss": 0.9097,
315
+ "step": 43
316
+ },
317
+ {
318
+ "epoch": 1.64,
319
+ "learning_rate": 7.570513720966108e-06,
320
+ "loss": 0.7788,
321
+ "step": 44
322
+ },
323
+ {
324
+ "epoch": 1.68,
325
+ "learning_rate": 7.464490961148921e-06,
326
+ "loss": 0.8286,
327
+ "step": 45
328
+ },
329
+ {
330
+ "epoch": 1.72,
331
+ "learning_rate": 7.3569836841299905e-06,
332
+ "loss": 0.811,
333
+ "step": 46
334
+ },
335
+ {
336
+ "epoch": 1.76,
337
+ "learning_rate": 7.248056648273034e-06,
338
+ "loss": 0.793,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 1.79,
343
+ "learning_rate": 7.137775467151411e-06,
344
+ "loss": 0.8564,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 1.83,
349
+ "learning_rate": 7.026206570024949e-06,
350
+ "loss": 0.8223,
351
+ "step": 49
352
+ },
353
+ {
354
+ "epoch": 1.83,
355
+ "eval_loss": 0.7741303443908691,
356
+ "eval_runtime": 37.1509,
357
+ "eval_samples_per_second": 1.911,
358
+ "eval_steps_per_second": 1.911,
359
+ "step": 49
360
+ },
361
+ {
362
+ "epoch": 1.87,
363
+ "learning_rate": 6.913417161825449e-06,
364
+ "loss": 0.9124,
365
+ "step": 50
366
+ },
367
+ {
368
+ "epoch": 1.91,
369
+ "learning_rate": 6.799475182674942e-06,
370
+ "loss": 0.8556,
371
+ "step": 51
372
+ },
373
+ {
374
+ "epoch": 1.94,
375
+ "learning_rate": 6.684449266961101e-06,
376
+ "loss": 0.8013,
377
+ "step": 52
378
+ },
379
+ {
380
+ "epoch": 1.98,
381
+ "learning_rate": 6.568408701994459e-06,
382
+ "loss": 0.8264,
383
+ "step": 53
384
+ },
385
+ {
386
+ "epoch": 2.02,
387
+ "learning_rate": 6.451423386272312e-06,
388
+ "loss": 0.8864,
389
+ "step": 54
390
+ },
391
+ {
392
+ "epoch": 2.06,
393
+ "learning_rate": 6.333563787374493e-06,
394
+ "loss": 0.8105,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 2.09,
399
+ "learning_rate": 6.21490089951632e-06,
400
+ "loss": 0.8621,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 2.09,
405
+ "eval_loss": 0.7700739502906799,
406
+ "eval_runtime": 37.1567,
407
+ "eval_samples_per_second": 1.911,
408
+ "eval_steps_per_second": 1.911,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 2.13,
413
+ "learning_rate": 6.095506200784349e-06,
414
+ "loss": 0.8165,
415
+ "step": 57
416
+ },
417
+ {
418
+ "epoch": 2.17,
419
+ "learning_rate": 5.975451610080643e-06,
420
+ "loss": 0.8335,
421
+ "step": 58
422
+ },
423
+ {
424
+ "epoch": 2.21,
425
+ "learning_rate": 5.8548094438015065e-06,
426
+ "loss": 0.8128,
427
+ "step": 59
428
+ },
429
+ {
430
+ "epoch": 2.24,
431
+ "learning_rate": 5.733652372276809e-06,
432
+ "loss": 0.9178,
433
+ "step": 60
434
+ },
435
+ {
436
+ "epoch": 2.28,
437
+ "learning_rate": 5.612053375996082e-06,
438
+ "loss": 0.8001,
439
+ "step": 61
440
+ },
441
+ {
442
+ "epoch": 2.32,
443
+ "learning_rate": 5.490085701647805e-06,
444
+ "loss": 0.8148,
445
+ "step": 62
446
+ },
447
+ {
448
+ "epoch": 2.36,
449
+ "learning_rate": 5.367822817998338e-06,
450
+ "loss": 0.89,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 2.36,
455
+ "eval_loss": 0.7689735293388367,
456
+ "eval_runtime": 36.9469,
457
+ "eval_samples_per_second": 1.922,
458
+ "eval_steps_per_second": 1.922,
459
+ "step": 63
460
+ },
461
+ {
462
+ "epoch": 2.39,
463
+ "learning_rate": 5.245338371637091e-06,
464
+ "loss": 0.73,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 2.43,
469
+ "learning_rate": 5.122706142614562e-06,
470
+ "loss": 0.8476,
471
+ "step": 65
472
+ },
473
+ {
474
+ "epoch": 2.47,
475
+ "learning_rate": 5e-06,
476
+ "loss": 0.8808,
477
+ "step": 66
478
+ },
479
+ {
480
+ "epoch": 2.5,
481
+ "learning_rate": 4.87729385738544e-06,
482
+ "loss": 0.88,
483
+ "step": 67
484
+ },
485
+ {
486
+ "epoch": 2.54,
487
+ "learning_rate": 4.75466162836291e-06,
488
+ "loss": 0.7914,
489
+ "step": 68
490
+ },
491
+ {
492
+ "epoch": 2.58,
493
+ "learning_rate": 4.6321771820016635e-06,
494
+ "loss": 0.8507,
495
+ "step": 69
496
+ },
497
+ {
498
+ "epoch": 2.62,
499
+ "learning_rate": 4.509914298352197e-06,
500
+ "loss": 0.8229,
501
+ "step": 70
502
+ },
503
+ {
504
+ "epoch": 2.62,
505
+ "eval_loss": 0.7681828141212463,
506
+ "eval_runtime": 37.0363,
507
+ "eval_samples_per_second": 1.917,
508
+ "eval_steps_per_second": 1.917,
509
+ "step": 70
510
+ },
511
+ {
512
+ "epoch": 2.65,
513
+ "learning_rate": 4.38794662400392e-06,
514
+ "loss": 0.8205,
515
+ "step": 71
516
+ },
517
+ {
518
+ "epoch": 2.69,
519
+ "learning_rate": 4.266347627723192e-06,
520
+ "loss": 0.785,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 2.73,
525
+ "learning_rate": 4.145190556198494e-06,
526
+ "loss": 0.723,
527
+ "step": 73
528
+ },
529
+ {
530
+ "epoch": 2.77,
531
+ "learning_rate": 4.02454838991936e-06,
532
+ "loss": 0.7553,
533
+ "step": 74
534
+ },
535
+ {
536
+ "epoch": 2.8,
537
+ "learning_rate": 3.904493799215652e-06,
538
+ "loss": 0.8349,
539
+ "step": 75
540
+ },
541
+ {
542
+ "epoch": 2.84,
543
+ "learning_rate": 3.7850991004836813e-06,
544
+ "loss": 0.9063,
545
+ "step": 76
546
+ },
547
+ {
548
+ "epoch": 2.88,
549
+ "learning_rate": 3.6664362126255087e-06,
550
+ "loss": 0.7675,
551
+ "step": 77
552
+ },
553
+ {
554
+ "epoch": 2.88,
555
+ "eval_loss": 0.7669386267662048,
556
+ "eval_runtime": 37.0181,
557
+ "eval_samples_per_second": 1.918,
558
+ "eval_steps_per_second": 1.918,
559
+ "step": 77
560
+ },
561
+ {
562
+ "epoch": 2.92,
563
+ "learning_rate": 3.5485766137276894e-06,
564
+ "loss": 0.8301,
565
+ "step": 78
566
+ },
567
+ {
568
+ "epoch": 2.95,
569
+ "learning_rate": 3.4315912980055433e-06,
570
+ "loss": 0.7527,
571
+ "step": 79
572
+ },
573
+ {
574
+ "epoch": 2.99,
575
+ "learning_rate": 3.3155507330389004e-06,
576
+ "loss": 0.8311,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 3.03,
581
+ "learning_rate": 3.2005248173250593e-06,
582
+ "loss": 0.7622,
583
+ "step": 81
584
+ },
585
+ {
586
+ "epoch": 3.07,
587
+ "learning_rate": 3.0865828381745515e-06,
588
+ "loss": 0.802,
589
+ "step": 82
590
+ },
591
+ {
592
+ "epoch": 3.1,
593
+ "learning_rate": 2.9737934299750514e-06,
594
+ "loss": 0.7803,
595
+ "step": 83
596
+ },
597
+ {
598
+ "epoch": 3.14,
599
+ "learning_rate": 2.862224532848591e-06,
600
+ "loss": 0.8235,
601
+ "step": 84
602
+ },
603
+ {
604
+ "epoch": 3.14,
605
+ "eval_loss": 0.76643306016922,
606
+ "eval_runtime": 37.3567,
607
+ "eval_samples_per_second": 1.901,
608
+ "eval_steps_per_second": 1.901,
609
+ "step": 84
610
+ },
611
+ {
612
+ "epoch": 3.18,
613
+ "learning_rate": 2.7519433517269665e-06,
614
+ "loss": 0.8095,
615
+ "step": 85
616
+ },
617
+ {
618
+ "epoch": 3.21,
619
+ "learning_rate": 2.6430163158700116e-06,
620
+ "loss": 0.7871,
621
+ "step": 86
622
+ },
623
+ {
624
+ "epoch": 3.25,
625
+ "learning_rate": 2.5355090388510806e-06,
626
+ "loss": 0.9052,
627
+ "step": 87
628
+ },
629
+ {
630
+ "epoch": 3.29,
631
+ "learning_rate": 2.429486279033892e-06,
632
+ "loss": 0.7754,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 3.33,
637
+ "learning_rate": 2.325011900564515e-06,
638
+ "loss": 0.8105,
639
+ "step": 89
640
+ },
641
+ {
642
+ "epoch": 3.36,
643
+ "learning_rate": 2.2221488349019903e-06,
644
+ "loss": 0.7491,
645
+ "step": 90
646
+ },
647
+ {
648
+ "epoch": 3.4,
649
+ "learning_rate": 2.1209590429107734e-06,
650
+ "loss": 0.8888,
651
+ "step": 91
652
+ },
653
+ {
654
+ "epoch": 3.4,
655
+ "eval_loss": 0.7650397419929504,
656
+ "eval_runtime": 37.1172,
657
+ "eval_samples_per_second": 1.913,
658
+ "eval_steps_per_second": 1.913,
659
+ "step": 91
660
+ },
661
+ {
662
+ "epoch": 3.44,
663
+ "learning_rate": 2.0215034775378336e-06,
664
+ "loss": 0.8014,
665
+ "step": 92
666
+ },
667
+ {
668
+ "epoch": 3.48,
669
+ "learning_rate": 1.9238420470968665e-06,
670
+ "loss": 0.8284,
671
+ "step": 93
672
+ },
673
+ {
674
+ "epoch": 3.51,
675
+ "learning_rate": 1.8280335791817733e-06,
676
+ "loss": 0.8674,
677
+ "step": 94
678
+ },
679
+ {
680
+ "epoch": 3.55,
681
+ "learning_rate": 1.7341357852311175e-06,
682
+ "loss": 0.8278,
683
+ "step": 95
684
+ },
685
+ {
686
+ "epoch": 3.59,
687
+ "learning_rate": 1.642205225764908e-06,
688
+ "loss": 0.798,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 3.63,
693
+ "learning_rate": 1.5522972763146653e-06,
694
+ "loss": 0.8205,
695
+ "step": 97
696
+ },
697
+ {
698
+ "epoch": 3.66,
699
+ "learning_rate": 1.4644660940672628e-06,
700
+ "loss": 0.7885,
701
+ "step": 98
702
+ },
703
+ {
704
+ "epoch": 3.66,
705
+ "eval_loss": 0.7652753591537476,
706
+ "eval_runtime": 37.5305,
707
+ "eval_samples_per_second": 1.892,
708
+ "eval_steps_per_second": 1.892,
709
+ "step": 98
710
+ },
711
+ {
712
+ "epoch": 3.7,
713
+ "learning_rate": 1.3787645852426663e-06,
714
+ "loss": 0.8437,
715
+ "step": 99
716
+ },
717
+ {
718
+ "epoch": 3.74,
719
+ "learning_rate": 1.2952443732252058e-06,
720
+ "loss": 0.7953,
721
+ "step": 100
722
+ },
723
+ {
724
+ "epoch": 3.78,
725
+ "learning_rate": 1.2139557674675773e-06,
726
+ "loss": 0.8059,
727
+ "step": 101
728
+ },
729
+ {
730
+ "epoch": 3.81,
731
+ "learning_rate": 1.134947733186315e-06,
732
+ "loss": 0.8249,
733
+ "step": 102
734
+ },
735
+ {
736
+ "epoch": 3.85,
737
+ "learning_rate": 1.058267861866969e-06,
738
+ "loss": 0.8576,
739
+ "step": 103
740
+ },
741
+ {
742
+ "epoch": 3.89,
743
+ "learning_rate": 9.83962342596776e-07,
744
+ "loss": 0.7749,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 3.93,
749
+ "learning_rate": 9.120759342420821e-07,
750
+ "loss": 0.8581,
751
+ "step": 105
752
+ },
753
+ {
754
+ "epoch": 3.93,
755
+ "eval_loss": 0.7648642659187317,
756
+ "eval_runtime": 37.1908,
757
+ "eval_samples_per_second": 1.909,
758
+ "eval_steps_per_second": 1.909,
759
+ "step": 105
760
+ },
761
+ {
762
+ "epoch": 3.96,
763
+ "learning_rate": 8.426519384872733e-07,
764
+ "loss": 0.7704,
765
+ "step": 106
766
+ },
767
+ {
768
+ "epoch": 4.0,
769
+ "learning_rate": 7.757321737514645e-07,
770
+ "loss": 0.8748,
771
+ "step": 107
772
+ },
773
+ {
774
+ "epoch": 4.04,
775
+ "learning_rate": 7.113569499986401e-07,
776
+ "loss": 0.804,
777
+ "step": 108
778
+ },
779
+ {
780
+ "epoch": 4.07,
781
+ "learning_rate": 6.495650444564433e-07,
782
+ "loss": 0.797,
783
+ "step": 109
784
+ },
785
+ {
786
+ "epoch": 4.11,
787
+ "learning_rate": 5.903936782582253e-07,
788
+ "loss": 0.7378,
789
+ "step": 110
790
+ },
791
+ {
792
+ "epoch": 4.15,
793
+ "learning_rate": 5.338784940224239e-07,
794
+ "loss": 0.8688,
795
+ "step": 111
796
+ },
797
+ {
798
+ "epoch": 4.19,
799
+ "learning_rate": 4.800535343827834e-07,
800
+ "loss": 0.749,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 4.19,
805
+ "eval_loss": 0.7643035054206848,
806
+ "eval_runtime": 37.2542,
807
+ "eval_samples_per_second": 1.906,
808
+ "eval_steps_per_second": 1.906,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 4.22,
813
+ "learning_rate": 4.289512214823466e-07,
814
+ "loss": 0.7901,
815
+ "step": 113
816
+ },
817
+ {
818
+ "epoch": 4.26,
819
+ "learning_rate": 3.8060233744356634e-07,
820
+ "loss": 0.8472,
821
+ "step": 114
822
+ },
823
+ {
824
+ "epoch": 4.3,
825
+ "learning_rate": 3.350360058263058e-07,
826
+ "loss": 0.8008,
827
+ "step": 115
828
+ },
829
+ {
830
+ "epoch": 4.34,
831
+ "learning_rate": 2.9227967408489653e-07,
832
+ "loss": 0.7978,
833
+ "step": 116
834
+ },
835
+ {
836
+ "epoch": 4.37,
837
+ "learning_rate": 2.523590970348166e-07,
838
+ "loss": 0.863,
839
+ "step": 117
840
+ },
841
+ {
842
+ "epoch": 4.41,
843
+ "learning_rate": 2.152983213389559e-07,
844
+ "loss": 0.8246,
845
+ "step": 118
846
+ },
847
+ {
848
+ "epoch": 4.45,
849
+ "learning_rate": 1.8111967102280082e-07,
850
+ "loss": 0.8035,
851
+ "step": 119
852
+ },
853
+ {
854
+ "epoch": 4.45,
855
+ "eval_loss": 0.7640846967697144,
856
+ "eval_runtime": 36.8656,
857
+ "eval_samples_per_second": 1.926,
858
+ "eval_steps_per_second": 1.926,
859
+ "step": 119
860
+ },
861
+ {
862
+ "epoch": 4.49,
863
+ "learning_rate": 1.4984373402728014e-07,
864
+ "loss": 0.8703,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 4.52,
869
+ "learning_rate": 1.2148934980735772e-07,
870
+ "loss": 0.778,
871
+ "step": 121
872
+ },
873
+ {
874
+ "epoch": 4.56,
875
+ "learning_rate": 9.607359798384785e-08,
876
+ "loss": 0.7844,
877
+ "step": 122
878
+ },
879
+ {
880
+ "epoch": 4.6,
881
+ "learning_rate": 7.36117880552939e-08,
882
+ "loss": 0.7964,
883
+ "step": 123
884
+ },
885
+ {
886
+ "epoch": 4.64,
887
+ "learning_rate": 5.411745017609493e-08,
888
+ "loss": 0.7973,
889
+ "step": 124
890
+ },
891
+ {
892
+ "epoch": 4.67,
893
+ "learning_rate": 3.7602327006450166e-08,
894
+ "loss": 0.8472,
895
+ "step": 125
896
+ },
897
+ {
898
+ "epoch": 4.71,
899
+ "learning_rate": 2.4076366639015914e-08,
900
+ "loss": 0.8169,
901
+ "step": 126
902
+ },
903
+ {
904
+ "epoch": 4.71,
905
+ "eval_loss": 0.7648836374282837,
906
+ "eval_runtime": 37.2706,
907
+ "eval_samples_per_second": 1.905,
908
+ "eval_steps_per_second": 1.905,
909
+ "step": 126
910
+ },
911
+ {
912
+ "epoch": 4.75,
913
+ "learning_rate": 1.3547716606548967e-08,
914
+ "loss": 0.7949,
915
+ "step": 127
916
+ },
917
+ {
918
+ "epoch": 4.79,
919
+ "learning_rate": 6.022718974137976e-09,
920
+ "loss": 0.8412,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 4.82,
925
+ "learning_rate": 1.5059065189787502e-09,
926
+ "loss": 0.8343,
927
+ "step": 129
928
+ },
929
+ {
930
+ "epoch": 4.86,
931
+ "learning_rate": 0.0,
932
+ "loss": 0.8341,
933
+ "step": 130
934
+ },
935
+ {
936
+ "epoch": 4.86,
937
+ "step": 130,
938
+ "total_flos": 3.500008779892654e+17,
939
+ "train_loss": 0.8453521888989669,
940
+ "train_runtime": 7729.7132,
941
+ "train_samples_per_second": 0.829,
942
+ "train_steps_per_second": 0.017
943
+ }
944
+ ],
945
+ "logging_steps": 1.0,
946
+ "max_steps": 130,
947
+ "num_train_epochs": 5,
948
+ "save_steps": 13,
949
+ "total_flos": 3.500008779892654e+17,
950
+ "trial_name": null,
951
+ "trial_params": null
952
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12052339a236b1fa8170bee33382b60ea6895a9813f823867730b5544701fdd4
3
+ size 4155