--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6087 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9526 | 1.0 | 112 | 1.8797 | 0.74 | | 0.9704 | 2.0 | 225 | 1.0561 | 0.7 | | 0.7957 | 3.0 | 337 | 0.7362 | 0.77 | | 0.4428 | 4.0 | 450 | 0.7820 | 0.8 | | 0.1422 | 5.0 | 562 | 0.6142 | 0.84 | | 0.3502 | 6.0 | 675 | 0.9189 | 0.82 | | 0.01 | 7.0 | 787 | 0.7735 | 0.83 | | 0.0068 | 8.0 | 900 | 1.0699 | 0.81 | | 0.1751 | 9.0 | 1012 | 0.5360 | 0.88 | | 0.0045 | 10.0 | 1125 | 0.5377 | 0.89 | | 0.154 | 11.0 | 1237 | 0.6542 | 0.86 | | 0.0025 | 12.0 | 1350 | 0.6206 | 0.89 | | 0.0022 | 13.0 | 1462 | 0.6118 | 0.88 | | 0.0021 | 14.0 | 1575 | 0.5961 | 0.89 | | 0.0018 | 15.0 | 1687 | 0.5958 | 0.88 | | 0.0017 | 16.0 | 1800 | 0.6062 | 0.88 | | 0.0017 | 17.0 | 1912 | 0.6005 | 0.88 | | 0.0015 | 18.0 | 2025 | 0.6052 | 0.88 | | 0.0014 | 19.0 | 2137 | 0.6114 | 0.88 | | 0.0015 | 19.91 | 2240 | 0.6087 | 0.88 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0