--- license: cc-by-nc-4.0 language: - ja datasets: - toshi456/LLaVA-CC3M-Pretrain-595K-JA - turing-motors/LLaVA-Instruct-150K-JA pipeline_tag: image-to-text tags: - vision - image-captioning - VQA --- # LLaVA-JP Model Card ## Model detail **Model type:** LLaVA-JP is a vision-language model that can converse about input images.
This model was trained by fine-tuning [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co./llm-jp/llm-jp-1.3b-v1.0) using [LLaVA](https://llava-vl.github.io/) method. **Training:** This model was initially trained with the Vision Projector using [LLaVA-CC3M-Pretrain-595K-JA](https://huggingface.co./datasets/toshi456/LLaVA-CC3M-Pretrain-595K-JA) and STAIR Captions.
In the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome. resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main ## How to use the model **1. Download dependencies** ``` git clone https://github.com/tosiyuki/LLaVA-JP.git ``` **2. Inference** ```python import requests import torch import transformers from PIL import Image from transformers.generation.streamers import TextStreamer from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX from llava.conversation import conv_templates, SeparatorStyle from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments from llava.train.dataset import tokenizer_image_token if __name__ == "__main__": parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() model_path = 'toshi456/llava-jp-1.3b-v1.0' model_args.vision_tower = "openai/clip-vit-large-patch14-336" device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32 model = LlavaGpt2ForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, use_safetensors=True, torch_dtype=torch_dtype, device_map=device, ) tokenizer = transformers.AutoTokenizer.from_pretrained( model_path, model_max_length=1024, padding_side="right", use_fast=False, ) model.eval() conv_mode = "v1" conv = conv_templates[conv_mode].copy() # image pre-process image_url = "https://huggingface.co./rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg" image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') if device == "cuda": image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].half().cuda().to(torch_dtype) else: image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].to(torch_dtype) # create prompt # ユーザー: \n{prompt} prompt = "猫の隣には何がありますか?" inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token( prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt' ).unsqueeze(0) if device == "cuda": input_ids = input_ids.to(device) input_ids = input_ids[:, :-1] # がinputの最後に入るので削除する stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0) # predict with torch.inference_mode(): model.generate( inputs=input_ids, images=image_tensor, do_sample=True, temperature=0.01, top_p=1.0, max_new_tokens=256, streamer=streamer, use_cache=True, ) """ノートパソコン""" ``` ## Training dataset **Stage1 Pretrain** - [LLaVA-CC3M-Pretrain-595K-JA](https://huggingface.co./datasets/toshi456/LLaVA-CC3M-Pretrain-595K-JA) - [Japanese STAIR Captions](http://captions.stair.center/) **Stage2 Fine-tuning** - [LLaVA-Instruct-150K-JA](https://huggingface.co./datasets/turing-motors/LLaVA-Instruct-150K-JA) - [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa) ## Acknowledgement - [LLaVA](https://llava-vl.github.io/) - [LLM-jp](https://llm-jp.nii.ac.jp/) ## License cc-by-nc-4.0