File size: 4,551 Bytes
9d457d5 aa48271 9d457d5 aa48271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
license: cc-by-nc-4.0
language:
- ja
datasets:
- toshi456/LLaVA-CC3M-Pretrain-595K-JA
- turing-motors/LLaVA-Instruct-150K-JA
pipeline_tag: image-to-text
tags:
- vision
- image-captioning
- VQA
---
# LLaVA-JP Model Card
## Model detail
**Model type:**
LLaVA-JP is a vision-language model that can converse about input images.<br>
This model was trained by fine-tuning [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co./llm-jp/llm-jp-1.3b-v1.0) using [LLaVA](https://llava-vl.github.io/) method.
**Training:**
This model was initially trained with the Vision Projector using [LLaVA-CC3M-Pretrain-595K-JA](https://huggingface.co./datasets/toshi456/LLaVA-CC3M-Pretrain-595K-JA) and STAIR Captions. <br>
In the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome.
resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main
## How to use the model
**1. Download dependencies**
```
git clone https://github.com/tosiyuki/LLaVA-JP.git
```
**2. Inference**
```python
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token
if __name__ == "__main__":
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_path = 'toshi456/llava-jp-1.3b-v1.0'
model_args.vision_tower = "openai/clip-vit-large-patch14-336"
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaGpt2ForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch_dtype,
device_map=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1024,
padding_side="right",
use_fast=False,
)
model.eval()
conv_mode = "v1"
conv = conv_templates[conv_mode].copy()
# image pre-process
image_url = "https://huggingface.co./rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
if device == "cuda":
image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].half().cuda().to(torch_dtype)
else:
image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].to(torch_dtype)
# create prompt
# ユーザー: <image>\n{prompt}
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
# predict
with torch.inference_mode():
model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=True,
temperature=0.01,
top_p=1.0,
max_new_tokens=256,
streamer=streamer,
use_cache=True,
)
"""ノートパソコン"""
```
## Training dataset
**Stage1 Pretrain**
- [LLaVA-CC3M-Pretrain-595K-JA](https://huggingface.co./datasets/toshi456/LLaVA-CC3M-Pretrain-595K-JA)
- [Japanese STAIR Captions](http://captions.stair.center/)
**Stage2 Fine-tuning**
- [LLaVA-Instruct-150K-JA](https://huggingface.co./datasets/turing-motors/LLaVA-Instruct-150K-JA)
- [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa)
## Acknowledgement
- [LLaVA](https://llava-vl.github.io/)
- [LLM-jp](https://llm-jp.nii.ac.jp/)
## License
cc-by-nc-4.0 |