File size: 4,551 Bytes
9d457d5
 
aa48271
 
 
 
 
 
 
 
 
 
9d457d5
aa48271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: cc-by-nc-4.0
language:
- ja
datasets:
- toshi456/LLaVA-CC3M-Pretrain-595K-JA
- turing-motors/LLaVA-Instruct-150K-JA
pipeline_tag: image-to-text
tags:
- vision
- image-captioning
- VQA
---

# LLaVA-JP Model Card

## Model detail

**Model type:**

LLaVA-JP is a vision-language model that can converse about input images.<br>
This model was trained by fine-tuning  [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co./llm-jp/llm-jp-1.3b-v1.0) using [LLaVA](https://llava-vl.github.io/) method.

**Training:**

This model was initially trained with the Vision Projector using [LLaVA-CC3M-Pretrain-595K-JA](https://huggingface.co./datasets/toshi456/LLaVA-CC3M-Pretrain-595K-JA) and STAIR Captions. <br>
In the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome.

resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main

## How to use the model
**1. Download dependencies**
```
git clone https://github.com/tosiyuki/LLaVA-JP.git
```

**2. Inference**
```python
import requests
import torch
import transformers
from PIL import Image

from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token


if __name__ == "__main__":
    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    model_path = 'toshi456/llava-jp-1.3b-v1.0'
    model_args.vision_tower = "openai/clip-vit-large-patch14-336"
    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32

    model = LlavaGpt2ForCausalLM.from_pretrained(
        model_path, 
        low_cpu_mem_usage=True,
        use_safetensors=True,
        torch_dtype=torch_dtype,
        device_map=device,
    )
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_path,
        model_max_length=1024,
        padding_side="right",
        use_fast=False,
    )
    model.eval()

    conv_mode = "v1"
    conv = conv_templates[conv_mode].copy()

    # image pre-process
    image_url = "https://huggingface.co./rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
    image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
    if device == "cuda":
        image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].half().cuda().to(torch_dtype)
    else:
        image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].to(torch_dtype)

    # create prompt
    # ユーザー: <image>\n{prompt}
    prompt = "猫の隣には何がありますか?"
    inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    input_ids = tokenizer_image_token(
        prompt, 
        tokenizer, 
        IMAGE_TOKEN_INDEX, 
        return_tensors='pt'
    ).unsqueeze(0)
    if device == "cuda":
        input_ids = input_ids.to(device)

    input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)

    # predict
    with torch.inference_mode():
        model.generate(
            inputs=input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=0.01,
            top_p=1.0,
            max_new_tokens=256,
            streamer=streamer,
            use_cache=True,
        )
    """ノートパソコン"""
```

## Training dataset
**Stage1 Pretrain**
- [LLaVA-CC3M-Pretrain-595K-JA](https://huggingface.co./datasets/toshi456/LLaVA-CC3M-Pretrain-595K-JA)
- [Japanese STAIR Captions](http://captions.stair.center/)

**Stage2 Fine-tuning**
- [LLaVA-Instruct-150K-JA](https://huggingface.co./datasets/turing-motors/LLaVA-Instruct-150K-JA)
- [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa)

## Acknowledgement
- [LLaVA](https://llava-vl.github.io/)
- [LLM-jp](https://llm-jp.nii.ac.jp/)

## License
cc-by-nc-4.0