update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: output
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# output
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1506
|
20 |
+
- Wer: 0.1353
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 7.5e-05
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 2000
|
48 |
+
- num_epochs: 50.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
55 |
+
| 4.1367 | 0.64 | 500 | 3.8825 | 1.0 |
|
56 |
+
| 2.9677 | 1.29 | 1000 | 2.9498 | 1.0 |
|
57 |
+
| 1.5884 | 1.93 | 1500 | 0.6722 | 0.6493 |
|
58 |
+
| 1.2292 | 2.57 | 2000 | 0.3635 | 0.3202 |
|
59 |
+
| 1.1314 | 3.22 | 2500 | 0.2970 | 0.2680 |
|
60 |
+
| 1.0879 | 3.86 | 3000 | 0.2671 | 0.2486 |
|
61 |
+
| 1.0344 | 4.5 | 3500 | 0.2625 | 0.2239 |
|
62 |
+
| 1.0109 | 5.15 | 4000 | 0.2520 | 0.2230 |
|
63 |
+
| 0.9966 | 5.79 | 4500 | 0.2280 | 0.2105 |
|
64 |
+
| 0.9815 | 6.43 | 5000 | 0.2254 | 0.2179 |
|
65 |
+
| 0.9744 | 7.08 | 5500 | 0.2301 | 0.2137 |
|
66 |
+
| 0.9487 | 7.72 | 6000 | 0.2224 | 0.2051 |
|
67 |
+
| 0.9431 | 8.37 | 6500 | 0.2105 | 0.1992 |
|
68 |
+
| 0.9365 | 9.01 | 7000 | 0.2114 | 0.2019 |
|
69 |
+
| 0.9268 | 9.65 | 7500 | 0.2097 | 0.1988 |
|
70 |
+
| 0.9292 | 10.3 | 8000 | 0.2120 | 0.1986 |
|
71 |
+
| 0.929 | 10.94 | 8500 | 0.2048 | 0.1998 |
|
72 |
+
| 0.9017 | 11.58 | 9000 | 0.2035 | 0.1999 |
|
73 |
+
| 0.8898 | 12.23 | 9500 | 0.1961 | 0.1908 |
|
74 |
+
| 0.8799 | 12.87 | 10000 | 0.1945 | 0.1817 |
|
75 |
+
| 0.869 | 13.51 | 10500 | 0.1929 | 0.1844 |
|
76 |
+
| 0.8572 | 14.16 | 11000 | 0.1941 | 0.1888 |
|
77 |
+
| 0.8691 | 14.8 | 11500 | 0.1912 | 0.1804 |
|
78 |
+
| 0.8645 | 15.44 | 12000 | 0.1950 | 0.1851 |
|
79 |
+
| 0.8468 | 16.09 | 12500 | 0.1879 | 0.1770 |
|
80 |
+
| 0.8405 | 16.73 | 13000 | 0.1881 | 0.1759 |
|
81 |
+
| 0.8647 | 17.37 | 13500 | 0.1861 | 0.1740 |
|
82 |
+
| 0.8477 | 18.02 | 14000 | 0.1782 | 0.1702 |
|
83 |
+
| 0.811 | 18.66 | 14500 | 0.1915 | 0.1757 |
|
84 |
+
| 0.8165 | 19.3 | 15000 | 0.1820 | 0.1724 |
|
85 |
+
| 0.8166 | 19.95 | 15500 | 0.1798 | 0.1697 |
|
86 |
+
| 0.8167 | 20.59 | 16000 | 0.1805 | 0.1752 |
|
87 |
+
| 0.7908 | 21.24 | 16500 | 0.1761 | 0.1699 |
|
88 |
+
| 0.7925 | 21.88 | 17000 | 0.1740 | 0.1709 |
|
89 |
+
| 0.7803 | 22.52 | 17500 | 0.1815 | 0.1727 |
|
90 |
+
| 0.7839 | 23.17 | 18000 | 0.1737 | 0.1694 |
|
91 |
+
| 0.7815 | 23.81 | 18500 | 0.1732 | 0.1630 |
|
92 |
+
| 0.767 | 24.45 | 19000 | 0.1724 | 0.1648 |
|
93 |
+
| 0.7672 | 25.1 | 19500 | 0.1706 | 0.1596 |
|
94 |
+
| 0.7691 | 25.74 | 20000 | 0.1718 | 0.1618 |
|
95 |
+
| 0.7547 | 26.38 | 20500 | 0.1694 | 0.1565 |
|
96 |
+
| 0.7498 | 27.03 | 21000 | 0.1706 | 0.1582 |
|
97 |
+
| 0.7459 | 27.67 | 21500 | 0.1663 | 0.1586 |
|
98 |
+
| 0.7374 | 28.31 | 22000 | 0.1651 | 0.1567 |
|
99 |
+
| 0.7499 | 28.96 | 22500 | 0.1668 | 0.1549 |
|
100 |
+
| 0.7471 | 29.6 | 23000 | 0.1667 | 0.1553 |
|
101 |
+
| 0.7369 | 30.24 | 23500 | 0.1659 | 0.1556 |
|
102 |
+
| 0.7389 | 30.89 | 24000 | 0.1668 | 0.1538 |
|
103 |
+
| 0.7197 | 31.53 | 24500 | 0.1687 | 0.1561 |
|
104 |
+
| 0.71 | 32.17 | 25000 | 0.1666 | 0.1516 |
|
105 |
+
| 0.7199 | 32.82 | 25500 | 0.1640 | 0.1523 |
|
106 |
+
| 0.7194 | 33.46 | 26000 | 0.1659 | 0.1528 |
|
107 |
+
| 0.6923 | 34.11 | 26500 | 0.1662 | 0.1507 |
|
108 |
+
| 0.7054 | 34.75 | 27000 | 0.1641 | 0.1486 |
|
109 |
+
| 0.6955 | 35.39 | 27500 | 0.1634 | 0.1497 |
|
110 |
+
| 0.7084 | 36.04 | 28000 | 0.1618 | 0.1478 |
|
111 |
+
| 0.6917 | 36.68 | 28500 | 0.1589 | 0.1471 |
|
112 |
+
| 0.687 | 37.32 | 29000 | 0.1589 | 0.1450 |
|
113 |
+
| 0.6914 | 37.97 | 29500 | 0.1588 | 0.1465 |
|
114 |
+
| 0.6646 | 38.61 | 30000 | 0.1602 | 0.1468 |
|
115 |
+
| 0.6667 | 39.25 | 30500 | 0.1588 | 0.1444 |
|
116 |
+
| 0.6754 | 39.9 | 31000 | 0.1587 | 0.1455 |
|
117 |
+
| 0.6632 | 40.54 | 31500 | 0.1586 | 0.1461 |
|
118 |
+
| 0.6619 | 41.18 | 32000 | 0.1571 | 0.1441 |
|
119 |
+
| 0.6561 | 41.83 | 32500 | 0.1564 | 0.1420 |
|
120 |
+
| 0.6492 | 42.47 | 33000 | 0.1539 | 0.1437 |
|
121 |
+
| 0.6649 | 43.11 | 33500 | 0.1512 | 0.1406 |
|
122 |
+
| 0.6511 | 43.76 | 34000 | 0.1539 | 0.1384 |
|
123 |
+
| 0.6551 | 44.4 | 34500 | 0.1520 | 0.1384 |
|
124 |
+
| 0.6452 | 45.05 | 35000 | 0.1510 | 0.1368 |
|
125 |
+
| 0.6155 | 45.69 | 35500 | 0.1522 | 0.1375 |
|
126 |
+
| 0.628 | 46.33 | 36000 | 0.1522 | 0.1366 |
|
127 |
+
| 0.6389 | 46.97 | 36500 | 0.1513 | 0.1377 |
|
128 |
+
| 0.6265 | 47.62 | 37000 | 0.1512 | 0.1369 |
|
129 |
+
| 0.6197 | 48.26 | 37500 | 0.1511 | 0.1362 |
|
130 |
+
| 0.621 | 48.91 | 38000 | 0.1510 | 0.1357 |
|
131 |
+
| 0.6259 | 49.55 | 38500 | 0.1506 | 0.1353 |
|
132 |
+
|
133 |
+
|
134 |
+
### Framework versions
|
135 |
+
|
136 |
+
- Transformers 4.17.0
|
137 |
+
- Pytorch 1.9.1+cu102
|
138 |
+
- Datasets 2.0.0
|
139 |
+
- Tokenizers 0.11.6
|