--- language: en license: other library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition - generated_from_span_marker_trainer datasets: - tner/bionlp2004 metrics: - precision - recall - f1 widget: - text: Coexpression of HMG I/Y and Oct-2 in cell lines lacking Oct-2 results in high levels of HLA-DRA gene expression, and in vitro DNA-binding studies reveal that HMG I/Y stimulates Oct-2A binding to the HLA-DRA promoter. - text: In erythroid cells most of the transcription activity was contained in a 150 bp promoter fragment with binding sites for transcription factors AP2, Sp1 and the erythroid-specific GATA-1. - text: 'Synergy between signal transduction pathways is obligatory for expression of c-fos in B and T cell lines: implication for c-fos control via surface immunoglobulin and T cell antigen receptors.' - text: CIITA mRNA is normally inducible by IFN-gamma in class II non-inducible, RB-defective lines, and in one line, re-expression of RB has no effect on CIITA mRNA induction levels. - text: As we reported previously, MNDA mRNA level in adherent monocytes is elevated by IFN-alpha; in this study, we further assessed MNDA expression in in vitro monocyte-derived macrophages. pipeline_tag: token-classification co2_eq_emissions: emissions: 45.104 source: codecarbon training_type: fine-tuning on_cloud: false gpu_model: 1 x NVIDIA GeForce RTX 3090 cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.296 model-index: - name: SpanMarker with bert-base-uncased on BioNLP2004 results: - task: type: token-classification name: Named Entity Recognition dataset: name: BioNLP2004 type: tner/bionlp2004 split: test metrics: - type: f1 value: 0.7620637836032726 name: F1 - type: precision value: 0.7289958470876371 name: Precision - type: recall value: 0.7982742537313433 name: Recall --- # SpanMarker with bert-base-uncased on BioNLP2004 This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [BioNLP2004](https://huggingface.co./datasets/tner/bionlp2004) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-uncased](https://huggingface.co./bert-base-uncased) as the underlying encoder. See [train.py](train.py) for the training script. ## Model Details ### Model Description - **Model Type:** SpanMarker - **Encoder:** [bert-base-uncased](https://huggingface.co./bert-base-uncased) - **Maximum Sequence Length:** 256 tokens - **Maximum Entity Length:** 8 words - **Training Dataset:** [BioNLP2004](https://huggingface.co./datasets/tner/bionlp2004) - **Language:** en - **License:** other ### Model Sources - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) ### Model Labels | Label | Examples | |:----------|:-------------------------------------------------------------------------------------------------| | DNA | "immunoglobulin heavy-chain enhancer", "enhancer", "immunoglobulin heavy-chain ( IgH ) enhancer" | | RNA | "GATA-1 mRNA", "c-myb mRNA", "antisense myb RNA" | | cell_line | "monocytic U937 cells", "TNF-treated HUVECs", "HUVECs" | | cell_type | "B cells", "non-B cells", "human red blood cells" | | protein | "ICAM-1", "VCAM-1", "NADPH oxidase" | ## Evaluation ### Metrics | Label | Precision | Recall | F1 | |:----------|:----------|:-------|:-------| | **all** | 0.7290 | 0.7983 | 0.7621 | | DNA | 0.7174 | 0.7505 | 0.7336 | | RNA | 0.6977 | 0.7692 | 0.7317 | | cell_line | 0.5831 | 0.7020 | 0.6370 | | cell_type | 0.8222 | 0.7381 | 0.7779 | | protein | 0.7196 | 0.8407 | 0.7755 | ## Uses ### Direct Use ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-bionlp") # Run inference entities = model.predict("In erythroid cells most of the transcription activity was contained in a 150 bp promoter fragment with binding sites for transcription factors AP2, Sp1 and the erythroid-specific GATA-1.") ``` ### Downstream Use You can finetune this model on your own dataset.
Click to expand ```python from span_marker import SpanMarkerModel, Trainer # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-bionlp") # Specify a Dataset with "tokens" and "ner_tag" columns dataset = load_dataset("conll2003") # For example CoNLL2003 # Initialize a Trainer using the pretrained model & dataset trainer = Trainer( model=model, train_dataset=dataset["train"], eval_dataset=dataset["validation"], ) trainer.train() trainer.save_model("tomaarsen/span-marker-bert-base-uncased-bionlp-finetuned") ```
## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:----------------------|:----|:--------|:----| | Sentence length | 2 | 26.5790 | 166 | | Entities per sentence | 0 | 2.7528 | 23 | ### Training Hyperparameters - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training Results | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| | 0.4505 | 300 | 0.0210 | 0.7497 | 0.7659 | 0.7577 | 0.9254 | | 0.9009 | 600 | 0.0162 | 0.8048 | 0.8217 | 0.8131 | 0.9432 | | 1.3514 | 900 | 0.0154 | 0.8126 | 0.8249 | 0.8187 | 0.9434 | | 1.8018 | 1200 | 0.0149 | 0.8148 | 0.8451 | 0.8296 | 0.9481 | | 2.2523 | 1500 | 0.0150 | 0.8297 | 0.8438 | 0.8367 | 0.9501 | | 2.7027 | 1800 | 0.0145 | 0.8280 | 0.8443 | 0.8361 | 0.9501 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.045 kg of CO2 - **Hours Used**: 0.296 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.9.16 - SpanMarker: 1.3.1.dev - Transformers : 4.29.2 - PyTorch: 2.0.1+cu118 - Datasets: 2.14.3 - Tokenizers: 0.13.2