--- language: - en library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition - generated_from_span_marker_trainer datasets: - tomaarsen/ner-orgs metrics: - precision - recall - f1 widget: - text: Hallacas are also commonly consumed in eastern Cuba parts of Colombia, Ecuador, Aruba, and Curaçao. - text: The co-production of Yvon Michel's GYM and Jean Bédard's Interbox promotions and televised via HBO, has trumped a proposed HBO -televised rematch between Jean Pascal and RING and WBC 175-pound champion Chad Dawson that was slated for the same date at Bell Centre in Montreal. - text: The synoptic conditions see a low over southern Norway, bringing warm south and southwesterly flows of air up from the inner continental areas of Russia and Belarus. - text: The RCIS recommended amongst other things that the Australian Security Intelligence Organisation (ASIO) areas of investigation be widened to include terrorism. - text: The large network had multiple campuses in Minnesota, Wisconsin, and South Dakota. pipeline_tag: token-classification co2_eq_emissions: emissions: 532.6472478623315 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 3.696 hardware_used: 1 x NVIDIA GeForce RTX 3090 base_model: bert-base-cased model-index: - name: SpanMarker with bert-base-cased on FewNERD, CoNLL2003, OntoNotes v5, and MultiNERD results: - task: type: token-classification name: Named Entity Recognition dataset: name: FewNERD, CoNLL2003, OntoNotes v5, and MultiNERD type: tomaarsen/ner-orgs split: test metrics: - type: f1 value: 0.0 name: F1 - type: precision value: 0.0 name: Precision - type: recall value: 0.0 name: Recall --- # SpanMarker with bert-base-cased on FewNERD, CoNLL2003, OntoNotes v5, and MultiNERD This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD, CoNLL2003, OntoNotes v5, and MultiNERD](https://huggingface.co./datasets/tomaarsen/ner-orgs) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-cased](https://huggingface.co./bert-base-cased) as the underlying encoder. ## Model Details ### Model Description - **Model Type:** SpanMarker - **Encoder:** [bert-base-cased](https://huggingface.co./bert-base-cased) - **Maximum Sequence Length:** 256 tokens - **Maximum Entity Length:** 8 words - **Training Dataset:** [FewNERD, CoNLL2003, OntoNotes v5, and MultiNERD](https://huggingface.co./datasets/tomaarsen/ner-orgs) - **Language:** en ### Model Sources - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) ### Model Labels | Label | Examples | |:------|:---------------------------------------------| | ORG | "IAEA", "Church 's Chicken", "Texas Chicken" | ## Evaluation ### Metrics | Label | Precision | Recall | F1 | |:--------|:----------|:-------|:----| | **all** | 0.0 | 0.0 | 0.0 | | ORG | 0.0 | 0.0 | 0.0 | ## Uses ### Direct Use for Inference ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-orgs") # Run inference entities = model.predict("The large network had multiple campuses in Minnesota, Wisconsin, and South Dakota.") ``` ### Downstream Use You can finetune this model on your own dataset.
Click to expand ```python from span_marker import SpanMarkerModel, Trainer # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-orgs") # Specify a Dataset with "tokens" and "ner_tag" columns dataset = load_dataset("conll2003") # For example CoNLL2003 # Initialize a Trainer using the pretrained model & dataset trainer = Trainer( model=model, train_dataset=dataset["train"], eval_dataset=dataset["validation"], ) trainer.train() trainer.save_model("tomaarsen/span-marker-bert-base-orgs-finetuned") ```
## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:----------------------|:----|:--------|:----| | Sentence length | 1 | 22.1911 | 267 | | Entities per sentence | 0 | 0.8144 | 39 | ### Training Hyperparameters - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training Results | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| | 0.3273 | 3000 | 0.0052 | 0.0 | 0.0 | 0.0 | 0.9413 | | 0.6546 | 6000 | 0.0047 | 0.0 | 0.0 | 0.0 | 0.9334 | | 0.9819 | 9000 | 0.0045 | 0.0 | 0.0 | 0.0 | 0.9376 | | 1.3092 | 12000 | 0.0047 | 0.0 | 0.0 | 0.0 | 0.9377 | | 1.6365 | 15000 | 0.0045 | 0.0 | 0.0 | 0.0 | 0.9339 | | 1.9638 | 18000 | 0.0046 | 0.0 | 0.0 | 0.0 | 0.9373 | | 2.2911 | 21000 | 0.0054 | 0.0 | 0.0 | 0.0 | 0.9351 | | 2.6184 | 24000 | 0.0053 | 0.0 | 0.0 | 0.0 | 0.9373 | | 2.9457 | 27000 | 0.0052 | 0.0 | 0.0 | 0.0 | 0.9359 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.533 kg of CO2 - **Hours Used**: 3.696 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.9.16 - SpanMarker: 1.5.1.dev - Transformers: 4.30.0 - PyTorch: 2.0.1+cu118 - Datasets: 2.14.0 - Tokenizers: 0.13.3 ## Citation ### BibTeX ``` @software{Aarsen_SpanMarker, author = {Aarsen, Tom}, license = {Apache-2.0}, title = {{SpanMarker for Named Entity Recognition}}, url = {https://github.com/tomaarsen/SpanMarkerNER} } ```