--- language: - en license: cc-by-sa-4.0 library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition - generated_from_span_marker_trainer datasets: - tomaarsen/ner-orgs metrics: - precision - recall - f1 widget: - text: Today in Zhongnanhai, General Secretary of the Communist Party of China, President of the country and honorary President of China's Red Cross, Zemin Jiang met with representatives of the 6th National Member Congress of China's Red Cross, and expressed warm greetings to the 20 million hardworking members on behalf of the Central Committee of the Chinese Communist Party and State Council. - text: On April 20, 2017, MGM Television Studios, headed by Mark Burnett formed a partnership with McLane and Buss to produce and distribute new content across a number of media platforms. - text: 'Postponed: East Fife v Clydebank, St Johnstone v' - text: Prime contractor was Hughes Aircraft Company Electronics Division which developed the Tiamat with the assistance of the NACA. - text: After graduating from Auburn University with a degree in Engineering in 1985, he went on to play inside linebacker for the Pittsburgh Steelers for four seasons. pipeline_tag: token-classification co2_eq_emissions: emissions: 248.1008753496152 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 1.766 hardware_used: 1 x NVIDIA GeForce RTX 3090 base_model: bert-base-cased model-index: - name: SpanMarker with bert-base-cased on FewNERD, CoNLL2003, and OntoNotes v5 results: - task: type: token-classification name: Named Entity Recognition dataset: name: FewNERD, CoNLL2003, and OntoNotes v5 type: tomaarsen/ner-orgs split: test metrics: - type: f1 value: 0.7946954813359528 name: F1 - type: precision value: 0.7958325880879986 name: Precision - type: recall value: 0.793561619404316 name: Recall --- # SpanMarker with bert-base-cased on FewNERD, CoNLL2003, and OntoNotes v5 This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD, CoNLL2003, and OntoNotes v5](https://huggingface.co./datasets/tomaarsen/ner-orgs) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-cased](https://huggingface.co./bert-base-cased) as the underlying encoder. ## Model Details ### Model Description - **Model Type:** SpanMarker - **Encoder:** [bert-base-cased](https://huggingface.co./bert-base-cased) - **Maximum Sequence Length:** 256 tokens - **Maximum Entity Length:** 8 words - **Training Dataset:** [FewNERD, CoNLL2003, and OntoNotes v5](https://huggingface.co./datasets/tomaarsen/ner-orgs) - **Language:** en - **License:** cc-by-sa-4.0 ### Model Sources - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) ### Model Labels | Label | Examples | |:------|:---------------------------------------------| | ORG | "Texas Chicken", "IAEA", "Church 's Chicken" | ## Evaluation ### Metrics | Label | Precision | Recall | F1 | |:--------|:----------|:-------|:-------| | **all** | 0.7958 | 0.7936 | 0.7947 | | ORG | 0.7958 | 0.7936 | 0.7947 | ## Uses ### Direct Use for Inference ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-orgs") # Run inference entities = model.predict("Postponed: East Fife v Clydebank, St Johnstone v") ``` ### Downstream Use You can finetune this model on your own dataset.
Click to expand ```python from span_marker import SpanMarkerModel, Trainer # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-orgs") # Specify a Dataset with "tokens" and "ner_tag" columns dataset = load_dataset("conll2003") # For example CoNLL2003 # Initialize a Trainer using the pretrained model & dataset trainer = Trainer( model=model, train_dataset=dataset["train"], eval_dataset=dataset["validation"], ) trainer.train() trainer.save_model("tomaarsen/span-marker-bert-base-orgs-finetuned") ```
## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:----------------------|:----|:--------|:----| | Sentence length | 1 | 23.5706 | 263 | | Entities per sentence | 0 | 0.7865 | 39 | ### Training Hyperparameters - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training Results | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| | 0.7131 | 3000 | 0.0061 | 0.7978 | 0.7830 | 0.7904 | 0.9764 | | 1.4262 | 6000 | 0.0059 | 0.8170 | 0.7843 | 0.8004 | 0.9774 | | 2.1393 | 9000 | 0.0061 | 0.8221 | 0.7938 | 0.8077 | 0.9772 | | 2.8524 | 12000 | 0.0062 | 0.8211 | 0.8003 | 0.8106 | 0.9780 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.248 kg of CO2 - **Hours Used**: 1.766 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.9.16 - SpanMarker: 1.5.1.dev - Transformers: 4.30.0 - PyTorch: 2.0.1+cu118 - Datasets: 2.14.0 - Tokenizers: 0.13.3 ## Citation ### BibTeX ``` @software{Aarsen_SpanMarker, author = {Aarsen, Tom}, license = {Apache-2.0}, title = {{SpanMarker for Named Entity Recognition}}, url = {https://github.com/tomaarsen/SpanMarkerNER} } ```