File size: 6,751 Bytes
09f6214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from pathlib import Path
import random
import shutil
from datasets import load_dataset, concatenate_datasets, Features, Sequence, ClassLabel, Value, DatasetDict
from transformers import TrainingArguments
from span_marker import SpanMarkerModel, Trainer
from span_marker.model_card import SpanMarkerModelCardData
from huggingface_hub import upload_folder, upload_file


"""
FEATURES = Features({"tokens": Sequence(feature=Value(dtype='string')), "ner_tags": Sequence(feature=ClassLabel(names=['O', 'B-ORG', 'I-ORG']))})


def load_fewnerd():
    def mapper(sample):
        sample["ner_tags"] = [int(tag == 5) for tag in sample["ner_tags"]]
        sample["ner_tags"] = [2 if tag == 1 and idx > 0 and sample["ner_tags"][idx - 1] == 1 else tag for idx, tag in enumerate(sample["ner_tags"])]
        return sample
    
    dataset = load_dataset("DFKI-SLT/few-nerd", "supervised")
    dataset = dataset.map(mapper, remove_columns=["id", "fine_ner_tags"])
    dataset = dataset.cast(FEATURES)
    return dataset


def load_conll():
    label_mapping = {3: 1, 4: 2}
    def mapper(sample):
        sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]]
        return sample

    dataset = load_dataset("conll2003")
    dataset = dataset.map(mapper, remove_columns=["id", "pos_tags", "chunk_tags"])
    dataset = dataset.cast(FEATURES)
    return dataset


def load_ontonotes():
    label_mapping = {11: 1, 12: 2}
    def mapper(sample):
        sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]]
        return sample

    dataset = load_dataset("tner/ontonotes5")
    dataset = dataset.rename_column("tags", "ner_tags")
    dataset = dataset.map(mapper)
    dataset = dataset.cast(FEATURES)
    return dataset


def load_multinerd():
    label_mapping = {5: 1, 6: 2}
    def mapper(sample):
        sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]]
        return sample

    def lang_filter(sample):
        return sample["lang"] == "en"

    dataset = load_dataset("Babelscape/multinerd")
    dataset = dataset.filter(lang_filter)
    dataset = dataset.map(mapper, remove_columns="lang")
    dataset = dataset.cast(FEATURES)
    return dataset


def preprocess_raw_dataset(raw_dataset):
    # Set the number of sentences without an org equal to the number of sentences with an org
    def has_org(sample):
        return bool(sum(sample["ner_tags"]))
    
    def has_no_org(sample):
        return not has_org(sample)

    dataset_org = raw_dataset.filter(has_org)
    dataset_no_org = raw_dataset.filter(has_no_org)
    dataset_no_org = dataset_no_org.select(random.sample(range(len(dataset_no_org)), k=len(dataset_org)))
    dataset = concatenate_datasets([dataset_org, dataset_no_org])
    return dataset
"""


def main() -> None:
    # Load the dataset, ensure "tokens" and "ner_tags" columns, and get a list of labels
    labels = ["O", "B-ORG", "I-ORG"]
    """
    fewnerd_dataset = load_fewnerd()
    conll_dataset = load_conll()
    ontonotes_dataset = load_ontonotes()
    multinerd_dataset = load_multinerd()

    raw_train_dataset = concatenate_datasets([fewnerd_dataset["train"], conll_dataset["train"], ontonotes_dataset["train"], multinerd_dataset["train"]])
    raw_eval_dataset = concatenate_datasets([fewnerd_dataset["validation"], conll_dataset["validation"], ontonotes_dataset["validation"], multinerd_dataset["validation"]])
    raw_test_dataset = concatenate_datasets([fewnerd_dataset["test"], conll_dataset["test"], ontonotes_dataset["test"], multinerd_dataset["test"]])

    train_dataset = preprocess_raw_dataset(raw_train_dataset)
    eval_dataset = preprocess_raw_dataset(raw_eval_dataset)
    test_dataset = preprocess_raw_dataset(raw_test_dataset)

    dataset_dict = DatasetDict({
        "train": train_dataset,
        "validation": eval_dataset,
        "test": test_dataset,
    })
    dataset_dict.push_to_hub("ner-orgs", private=True)
    """
    # breakpoint()
    dataset = load_dataset("tomaarsen/ner-orgs")

    train_dataset = dataset["train"]
    eval_dataset = dataset["validation"]
    eval_dataset = eval_dataset.select(random.sample(range(len(eval_dataset)), k=3000))
    test_dataset = dataset["test"]

    # Initialize a SpanMarker model using a pretrained BERT-style encoder
    encoder_id = "bert-base-cased"
    model_id = f"tomaarsen/span-marker-bert-base-orgs"
    model = SpanMarkerModel.from_pretrained(
        encoder_id,
        labels=labels,
        # SpanMarker hyperparameters:
        model_max_length=256,
        marker_max_length=128,
        entity_max_length=8,
        # Model card variables
        model_card_data=SpanMarkerModelCardData(
            model_id=model_id,
            encoder_id=encoder_id,
            dataset_name="FewNERD, CoNLL2003, OntoNotes v5, and MultiNERD",
            language=["en"],
        ),
    )

    # Prepare the 🤗 transformers training arguments
    output_dir = Path("models") / model_id
    args = TrainingArguments(
        output_dir=output_dir,
        run_name=model_id,
        # Training Hyperparameters:
        learning_rate=5e-5,
        per_device_train_batch_size=32,
        per_device_eval_batch_size=32,
        num_train_epochs=3,
        weight_decay=0.01,
        warmup_ratio=0.1,
        bf16=True,  # Replace `bf16` with `fp16` if your hardware can't use bf16.
        # Other Training parameters
        logging_first_step=True,
        logging_steps=100,
        evaluation_strategy="steps",
        save_strategy="steps",
        eval_steps=3000,
        save_total_limit=1,
        dataloader_num_workers=4,
    )

    # Initialize the trainer using our model, training args & dataset, and train
    trainer = Trainer(
        model=model,
        args=args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
    )
    trainer.train()

    # Compute & save the metrics on the test set
    metrics = trainer.evaluate(test_dataset, metric_key_prefix="test")
    trainer.save_metrics("test", metrics)

    # Save the model & training script locally
    trainer.save_model(output_dir / "checkpoint-final")
    shutil.copy2(__file__, output_dir / "checkpoint-final" / "train.py")

    # Upload everything to the Hub
    breakpoint()
    model.push_to_hub(model_id, private=True)
    upload_folder(folder_path=output_dir / "runs", path_in_repo="runs", repo_id=model_id)
    upload_file(path_or_fileobj=__file__, path_in_repo="train.py", repo_id=model_id)
    upload_file(path_or_fileobj=output_dir / "all_results.json", path_in_repo="all_results.json", repo_id=model_id)
    upload_file(path_or_fileobj=output_dir / "emissions.csv", path_in_repo="emissions.csv", repo_id=model_id)


if __name__ == "__main__":
    main()