File size: 8,018 Bytes
35f487a
df37464
 
 
35f487a
 
 
 
 
 
07f6697
df37464
 
3f687ac
07f6697
 
 
df37464
 
 
 
 
 
 
 
 
07f6697
df37464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f487a
 
df37464
3f687ac
df37464
 
 
 
06af9d7
07f6697
3f687ac
07f6697
 
df37464
07f6697
 
df37464
 
 
3f687ac
07f6697
3f687ac
07f6697
 
35f487a
df37464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f6697
35f487a
07f6697
35f487a
07f6697
 
35f487a
07f6697
df37464
07f6697
df37464
35f487a
 
07f6697
 
 
 
35f487a
 
07f6697
35f487a
 
df37464
07f6697
 
 
 
 
 
 
 
 
 
 
df37464
07f6697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df37464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f6697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f487a
 
07f6697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
language:
- en
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- acronym_identification
metrics:
- precision
- recall
- f1
widget:
- text: "Here, DA = direct assessment, RR = relative ranking, DS = discrete scale and CS = continuous scale."
  example_title: "Example 1"
- text: "Modifying or replacing the Erasable Programmable Read Only Memory (EPROM) in a phone would allow the configuration of any ESN and MIN via software for cellular devices."
  example_title: "Example 2"
- text: "We propose a technique called Aggressive Stochastic Weight Averaging (ASWA) and an extension called Norm-filtered Aggressive Stochastic Weight Averaging (NASWA) which improves the stability of models over random seeds."
  example_title: "Example 3"
- text: "The choice of the encoder and decoder modules of DNPG can be quite flexible, for instance long-short term memory networks (LSTM) or convolutional neural network (CNN)."
  example_title: "Example 4"
pipeline_tag: token-classification
co2_eq_emissions:
  emissions: 30.818996419923273
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.204
  hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: bert-base-cased
model-index:
- name: SpanMarker with bert-base-cased on Acronym Identification
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: Acronym Identification
      type: acronym_identification
      split: validation
    metrics:
    - type: f1
      value: 0.9336161187698834
      name: F1
    - type: precision
      value: 0.942208904109589
      name: Precision
    - type: recall
      value: 0.9251786464901219
      name: Recall
---

# SpanMarker with bert-base-cased on Acronym Identification

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [Acronym Identification](https://huggingface.co./datasets/acronym_identification) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-cased](https://huggingface.co./bert-base-cased) as the underlying encoder. See [train.py](train.py) for the training script.

Is your data not (always) capitalized correctly? Then consider using the uncased variant of this model instead for better performance: 
[tomaarsen/span-marker-bert-base-uncased-acronyms](https://huggingface.co./tomaarsen/span-marker-bert-base-uncased-acronyms).

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [bert-base-cased](https://huggingface.co./bert-base-cased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [Acronym Identification](https://huggingface.co./datasets/acronym_identification)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label | Examples                                                                                              |
|:------|:------------------------------------------------------------------------------------------------------|
| long  | "Conversational Question Answering", "controlled natural language", "successive convex approximation" |
| short | "SODA", "CNL", "CoQA"                                                                                 |

## Evaluation

### Metrics
| Label   | Precision | Recall | F1     |
|:--------|:----------|:-------|:-------|
| **all** | 0.9422    | 0.9252 | 0.9336 |
| long    | 0.9308    | 0.9013 | 0.9158 |
| short   | 0.9479    | 0.9374 | 0.9426 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-acronyms")
# Run inference
entities = model.predict("Compression algorithms like Principal Component Analysis (PCA) can reduce noise and complexity.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-acronyms")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-base-acronyms-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 4   | 32.3372 | 170 |
| Entities per sentence | 0   | 2.6775  | 24  |

### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training Results
| Epoch  | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.3101 | 200  | 0.0083          | 0.9170               | 0.8894            | 0.9030        | 0.9766              |
| 0.6202 | 400  | 0.0063          | 0.9329               | 0.9149            | 0.9238        | 0.9807              |
| 0.9302 | 600  | 0.0060          | 0.9279               | 0.9338            | 0.9309        | 0.9819              |
| 1.2403 | 800  | 0.0058          | 0.9406               | 0.9092            | 0.9247        | 0.9812              |
| 1.5504 | 1000 | 0.0056          | 0.9453               | 0.9155            | 0.9302        | 0.9825              |
| 1.8605 | 1200 | 0.0054          | 0.9411               | 0.9271            | 0.9340        | 0.9831              |

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.031 kg of CO2
- **Hours Used**: 0.204 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.9.16
- SpanMarker: 1.3.1.dev
- Transformers: 4.30.0
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.0
- Tokenizers: 0.13.2

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->