File size: 8,018 Bytes
35f487a df37464 35f487a 07f6697 df37464 3f687ac 07f6697 df37464 07f6697 df37464 35f487a df37464 3f687ac df37464 06af9d7 07f6697 3f687ac 07f6697 df37464 07f6697 df37464 3f687ac 07f6697 3f687ac 07f6697 35f487a df37464 07f6697 35f487a 07f6697 35f487a 07f6697 35f487a 07f6697 df37464 07f6697 df37464 35f487a 07f6697 35f487a 07f6697 35f487a df37464 07f6697 df37464 07f6697 df37464 07f6697 35f487a 07f6697 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
language:
- en
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- acronym_identification
metrics:
- precision
- recall
- f1
widget:
- text: "Here, DA = direct assessment, RR = relative ranking, DS = discrete scale and CS = continuous scale."
example_title: "Example 1"
- text: "Modifying or replacing the Erasable Programmable Read Only Memory (EPROM) in a phone would allow the configuration of any ESN and MIN via software for cellular devices."
example_title: "Example 2"
- text: "We propose a technique called Aggressive Stochastic Weight Averaging (ASWA) and an extension called Norm-filtered Aggressive Stochastic Weight Averaging (NASWA) which improves the stability of models over random seeds."
example_title: "Example 3"
- text: "The choice of the encoder and decoder modules of DNPG can be quite flexible, for instance long-short term memory networks (LSTM) or convolutional neural network (CNN)."
example_title: "Example 4"
pipeline_tag: token-classification
co2_eq_emissions:
emissions: 30.818996419923273
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.204
hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: bert-base-cased
model-index:
- name: SpanMarker with bert-base-cased on Acronym Identification
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Acronym Identification
type: acronym_identification
split: validation
metrics:
- type: f1
value: 0.9336161187698834
name: F1
- type: precision
value: 0.942208904109589
name: Precision
- type: recall
value: 0.9251786464901219
name: Recall
---
# SpanMarker with bert-base-cased on Acronym Identification
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [Acronym Identification](https://huggingface.co./datasets/acronym_identification) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-cased](https://huggingface.co./bert-base-cased) as the underlying encoder. See [train.py](train.py) for the training script.
Is your data not (always) capitalized correctly? Then consider using the uncased variant of this model instead for better performance:
[tomaarsen/span-marker-bert-base-uncased-acronyms](https://huggingface.co./tomaarsen/span-marker-bert-base-uncased-acronyms).
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [bert-base-cased](https://huggingface.co./bert-base-cased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [Acronym Identification](https://huggingface.co./datasets/acronym_identification)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------|
| long | "Conversational Question Answering", "controlled natural language", "successive convex approximation" |
| short | "SODA", "CNL", "CoQA" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:--------|:----------|:-------|:-------|
| **all** | 0.9422 | 0.9252 | 0.9336 |
| long | 0.9308 | 0.9013 | 0.9158 |
| short | 0.9479 | 0.9374 | 0.9426 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-acronyms")
# Run inference
entities = model.predict("Compression algorithms like Principal Component Analysis (PCA) can reduce noise and complexity.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-acronyms")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-base-acronyms-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 4 | 32.3372 | 170 |
| Entities per sentence | 0 | 2.6775 | 24 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.3101 | 200 | 0.0083 | 0.9170 | 0.8894 | 0.9030 | 0.9766 |
| 0.6202 | 400 | 0.0063 | 0.9329 | 0.9149 | 0.9238 | 0.9807 |
| 0.9302 | 600 | 0.0060 | 0.9279 | 0.9338 | 0.9309 | 0.9819 |
| 1.2403 | 800 | 0.0058 | 0.9406 | 0.9092 | 0.9247 | 0.9812 |
| 1.5504 | 1000 | 0.0056 | 0.9453 | 0.9155 | 0.9302 | 0.9825 |
| 1.8605 | 1200 | 0.0054 | 0.9411 | 0.9271 | 0.9340 | 0.9831 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.031 kg of CO2
- **Hours Used**: 0.204 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.9.16
- SpanMarker: 1.3.1.dev
- Transformers: 4.30.0
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.0
- Tokenizers: 0.13.2
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |