tomaarsen HF staff commited on
Commit
166ad20
·
verified ·
1 Parent(s): c04c949

Add new CrossEncoder model

Browse files
README.md ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - cross-encoder
7
+ - text-classification
8
+ - generated_from_trainer
9
+ - dataset_size:78704
10
+ - loss:ListNetLoss
11
+ base_model: microsoft/MiniLM-L12-H384-uncased
12
+ datasets:
13
+ - microsoft/ms_marco
14
+ pipeline_tag: text-classification
15
+ library_name: sentence-transformers
16
+ metrics:
17
+ - map
18
+ - mrr@10
19
+ - ndcg@10
20
+ co2_eq_emissions:
21
+ emissions: 206.93024560685208
22
+ energy_consumed: 0.532362183901426
23
+ source: codecarbon
24
+ training_type: fine-tuning
25
+ on_cloud: false
26
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
27
+ ram_total_size: 31.777088165283203
28
+ hours_used: 1.708
29
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
30
+ model-index:
31
+ - name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
32
+ results: []
33
+ ---
34
+
35
+ # CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
36
+
37
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
38
+
39
+ ## Model Details
40
+
41
+ ### Model Description
42
+ - **Model Type:** Cross Encoder
43
+ - **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
44
+ - **Maximum Sequence Length:** 512 tokens
45
+ - **Number of Output Labels:** 1 label
46
+ - **Training Dataset:**
47
+ - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
48
+ - **Language:** en
49
+ <!-- - **License:** Unknown -->
50
+
51
+ ### Model Sources
52
+
53
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
54
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
55
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
56
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
57
+
58
+ ## Usage
59
+
60
+ ### Direct Usage (Sentence Transformers)
61
+
62
+ First install the Sentence Transformers library:
63
+
64
+ ```bash
65
+ pip install -U sentence-transformers
66
+ ```
67
+
68
+ Then you can load this model and run inference.
69
+ ```python
70
+ from sentence_transformers import CrossEncoder
71
+
72
+ # Download from the 🤗 Hub
73
+ model = CrossEncoder("tomaarsen/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-listnet-sigmoid")
74
+ # Get scores for pairs of texts
75
+ pairs = [
76
+ ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],
77
+ ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],
78
+ ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],
79
+ ]
80
+ scores = model.predict(pairs)
81
+ print(scores.shape)
82
+ # (3,)
83
+
84
+ # Or rank different texts based on similarity to a single text
85
+ ranks = model.rank(
86
+ 'How many calories in an egg',
87
+ [
88
+ 'There are on average between 55 and 80 calories in an egg depending on its size.',
89
+ 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',
90
+ 'Most of the calories in an egg come from the yellow yolk in the center.',
91
+ ]
92
+ )
93
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
94
+ ```
95
+
96
+ <!--
97
+ ### Direct Usage (Transformers)
98
+
99
+ <details><summary>Click to see the direct usage in Transformers</summary>
100
+
101
+ </details>
102
+ -->
103
+
104
+ <!--
105
+ ### Downstream Usage (Sentence Transformers)
106
+
107
+ You can finetune this model on your own dataset.
108
+
109
+ <details><summary>Click to expand</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Out-of-Scope Use
116
+
117
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
118
+ -->
119
+
120
+ ## Evaluation
121
+
122
+ ### Metrics
123
+
124
+ #### Cross Encoder Reranking
125
+
126
+ * Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
127
+ * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator)
128
+
129
+ | Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
130
+ |:------------|:---------------------|:---------------------|:---------------------|
131
+ | map | 0.5282 (+0.0387) | 0.3272 (+0.0662) | 0.5598 (+0.1402) |
132
+ | mrr@10 | 0.5156 (+0.0381) | 0.5520 (+0.0521) | 0.5627 (+0.1360) |
133
+ | **ndcg@10** | **0.5787 (+0.0383)** | **0.3588 (+0.0337)** | **0.6221 (+0.1215)** |
134
+
135
+ #### Cross Encoder Nano BEIR
136
+
137
+ * Dataset: `NanoBEIR_R100_mean`
138
+ * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator)
139
+
140
+ | Metric | Value |
141
+ |:------------|:---------------------|
142
+ | map | 0.4717 (+0.0817) |
143
+ | mrr@10 | 0.5434 (+0.0754) |
144
+ | **ndcg@10** | **0.5199 (+0.0645)** |
145
+
146
+ <!--
147
+ ## Bias, Risks and Limitations
148
+
149
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
150
+ -->
151
+
152
+ <!--
153
+ ### Recommendations
154
+
155
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
156
+ -->
157
+
158
+ ## Training Details
159
+
160
+ ### Training Dataset
161
+
162
+ #### ms_marco
163
+
164
+ * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
165
+ * Size: 78,704 training samples
166
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
167
+ * Approximate statistics based on the first 1000 samples:
168
+ | | query | docs | labels |
169
+ |:--------|:-----------------------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
170
+ | type | string | list | list |
171
+ | details | <ul><li>min: 11 characters</li><li>mean: 33.13 characters</li><li>max: 90 characters</li></ul> | <ul><li>size: 10 elements</li></ul> | <ul><li>size: 10 elements</li></ul> |
172
+ * Samples:
173
+ | query | docs | labels |
174
+ |:-----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
175
+ | <code>how much does the average funeral cost</code> | <code>['Average Funeral Costs. According to the Federal Trade Commission, the average funeral costs in the United States can be well over $10,000 by the time you add floral arrangements, prayer cards and family transportation. Traditionally, when people think of funeral expenses they think of things like a casket and flowers. Headstones often start around $500 and run upwards of $4000. The materials used for construction contribute to a wide price range. An average granite headstone in 2009 cost about $1500. If your loved one did not already have a cemetery plot, you will need to purchase one. Prices of cemetery plots depend on location. They start as low as a few hundred dollars and can be upward of a few thousand', 'National average funeral cost: $5,000-$15,000 CAD. In Canada, the price of a funeral varies greatly by area and method. A basic cremation service in Toronto can cost $1,470 CAD to cut costs. Many families are opting to choose at-home funerals. National average funeral cost: $6,...</code> | <code>[1, 1, 0, 0, 0, ...]</code> |
176
+ | <code>what is the seven sisters constellation</code> | <code>["The Seven Sisters is a small grouping of stars better known as the Pleiades, in the constellation Taurus. It is a group of six to seven stars (with the naked eye) and about 36 … stars (with binoculars) easily viewable on any clear night in the wintertime or very early spring. The Seven Sisters is what is known as an open cluster of stars. It's also known as The Pleiades. (PLEE-uh-DEES). 3 people found this useful. Edit. Share to: 1 The Periodic Table of Elements Life is sustained by a number of chemical elements.", 'For other uses of Pleiades or Pleiades, pléiades See (pleiades) . Disambiguation in, astronomy The (/pleiades.ˈplaɪ/ ədiːz /or.ˈpliː/), ədiːz Or Seven (Sisters messier 45 Or), m45 is an open star cluster containing-middle aged Hot-b type stars located in the constellation Of. taurus The nine brightest stars of the Pleiades are named for the Seven Sisters of Greek mythology: Sterope, Merope, Electra, Maia, Taygeta, Celaeno, and Alcyone, along with their parents Atlas and ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
177
+ | <code>the name nicole means</code> | <code>["Nicole is a feminine given name and a surname. The given name Nicole is of Greek origin and means victorious people. It's evolved into a French feminine derivative of the masculine given name Nicolas. There are many variants. The surname Nicole originates in Netherlands where it was notable for its various branches, and associated status or influenc", "Nicole is a feminine given name and a surname.The given name Nicole is of Greek origin and means victorious people. It's evolved into a French feminine derivative of the masculine given name Nicholas.The given name Nicole is of Greek origin and means v. A feminine form of Nicolas, which is from the Greek Nikolaos, a compound name composed of the elements nikē (victory) and laos (the people): hence, victory of the people. Cole, Ercole, Micole, Niocole, Nycole. Nicole is a feminine given name and a surname.The given name Nicole is of Greek origin and means victorious people. It's evolved into a French feminine derivative of the masculine...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
178
+ * Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
179
+ ```json
180
+ {
181
+ "pad_value": -1,
182
+ "activation_fct": "torch.nn.modules.activation.Sigmoid"
183
+ }
184
+ ```
185
+
186
+ ### Evaluation Dataset
187
+
188
+ #### ms_marco
189
+
190
+ * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
191
+ * Size: 1,000 evaluation samples
192
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
193
+ * Approximate statistics based on the first 1000 samples:
194
+ | | query | docs | labels |
195
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
196
+ | type | string | list | list |
197
+ | details | <ul><li>min: 10 characters</li><li>mean: 33.86 characters</li><li>max: 100 characters</li></ul> | <ul><li>size: 10 elements</li></ul> | <ul><li>size: 10 elements</li></ul> |
198
+ * Samples:
199
+ | query | docs | labels |
200
+ |:--------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
201
+ | <code>how much does a adjunct professor get paid</code> | <code>['The average per-course pay reported for adjuncts at Ohio State University is $4,853, compared with an average of $6,500 reported at the University of Michigan at Ann Arbor. Harvard pays adjuncts $11,037, on average, according to the data that adjuncts have submitted so far. Many adjuncts have also indicated that they are essentially shut out of participating in most forms of governance. The overall average pay reported by adjuncts is $2,987 per three-credit course. Adjuncts at 16 colleges reported earning less than $1,000. The highest pay reported is $12,575, in the anthropology department at Harvard University', "Not surprisingly, at community colleges, adjuncts said they are paid much less. At Houston Community College, adjuncts reported earning between $1,200 and $2,200 for a three-credit English course. In some departments, adjuncts said anecdotally that pay depends on the degree held. One adjunct professor in history, for example, reported that where he or she works, instructors...</code> | <code>[1, 1, 0, 0, 0, ...]</code> |
202
+ | <code>what a normal heart beat per minute</code> | <code>["1 A normal adult resting heart beat is between 60-100 heartbeats per minute. 2 Some experienced athletes may see their resting heartrate fall below 60 beats per minute. 3 Tachycardia refers to the heart beating too fast at rest-over 100 beats per minute. 1 Your heart rate is the number of times per minute that the heart beats. 2 Heart rate rises significantly in response to adrenaline if a person is frightened or surprised. 3 Taking a person's pulse is a direct measure of heart rate.", 'Most adults have a resting heart rate of 60-100 beats per minute (bpm). The fitter you are, the lower your resting heart rate is likely to be. For example, athletes may have a resting heart rate of 40-60 bpm or lower. ', 'Even if you’re not an athlete, knowledge about your heart rate can help you monitor your fitness level — and it might even help you spot developing health problems. Your heart rate, or pulse, is the number of times your heart beats per minute. Normal heart rate varies from person...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
203
+ | <code>what is sauterne wine</code> | <code>['Sauternes is a French sweet wine from the Sauternais region of the Graves section in Bordeaux. Barsac lies within Sauternes, and is entitled to use either name. Somewhat similar but less expensive and typically less-distinguished wines are produced in the neighboring regions of Monbazillac, Cerons, Cérons loupiac And. cadillac', 'Sauternes is made from Semillon, Sémillon sauvignon, blanc And muscadelle grapes that have been affected By botrytis, cinerea also known as noble. rot Barsac lies within Sauternes, and is entitled to use either name. Somewhat similar but less expensive and typically less-distinguished wines are produced in the neighboring regions of Monbazillac, Cerons, Cérons loupiac And. cadillac', 'Sauternes, 40 miles (65km) south of Bordeaux city, is a village famous for its high-quality sweet wines. Although some wineries here produce dry wines, they sell them under appellations other than the sweet-specific Sauternes appellation. A half-bottle of top-quality, aged Saut...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
204
+ * Loss: [<code>ListNetLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listnetloss) with these parameters:
205
+ ```json
206
+ {
207
+ "pad_value": -1,
208
+ "activation_fct": "torch.nn.modules.activation.Sigmoid"
209
+ }
210
+ ```
211
+
212
+ ### Training Hyperparameters
213
+ #### Non-Default Hyperparameters
214
+
215
+ - `eval_strategy`: steps
216
+ - `per_device_train_batch_size`: 6
217
+ - `per_device_eval_batch_size`: 16
218
+ - `learning_rate`: 2e-05
219
+ - `warmup_ratio`: 0.1
220
+ - `seed`: 12
221
+ - `bf16`: True
222
+ - `load_best_model_at_end`: True
223
+
224
+ #### All Hyperparameters
225
+ <details><summary>Click to expand</summary>
226
+
227
+ - `overwrite_output_dir`: False
228
+ - `do_predict`: False
229
+ - `eval_strategy`: steps
230
+ - `prediction_loss_only`: True
231
+ - `per_device_train_batch_size`: 6
232
+ - `per_device_eval_batch_size`: 16
233
+ - `per_gpu_train_batch_size`: None
234
+ - `per_gpu_eval_batch_size`: None
235
+ - `gradient_accumulation_steps`: 1
236
+ - `eval_accumulation_steps`: None
237
+ - `torch_empty_cache_steps`: None
238
+ - `learning_rate`: 2e-05
239
+ - `weight_decay`: 0.0
240
+ - `adam_beta1`: 0.9
241
+ - `adam_beta2`: 0.999
242
+ - `adam_epsilon`: 1e-08
243
+ - `max_grad_norm`: 1.0
244
+ - `num_train_epochs`: 3
245
+ - `max_steps`: -1
246
+ - `lr_scheduler_type`: linear
247
+ - `lr_scheduler_kwargs`: {}
248
+ - `warmup_ratio`: 0.1
249
+ - `warmup_steps`: 0
250
+ - `log_level`: passive
251
+ - `log_level_replica`: warning
252
+ - `log_on_each_node`: True
253
+ - `logging_nan_inf_filter`: True
254
+ - `save_safetensors`: True
255
+ - `save_on_each_node`: False
256
+ - `save_only_model`: False
257
+ - `restore_callback_states_from_checkpoint`: False
258
+ - `no_cuda`: False
259
+ - `use_cpu`: False
260
+ - `use_mps_device`: False
261
+ - `seed`: 12
262
+ - `data_seed`: None
263
+ - `jit_mode_eval`: False
264
+ - `use_ipex`: False
265
+ - `bf16`: True
266
+ - `fp16`: False
267
+ - `fp16_opt_level`: O1
268
+ - `half_precision_backend`: auto
269
+ - `bf16_full_eval`: False
270
+ - `fp16_full_eval`: False
271
+ - `tf32`: None
272
+ - `local_rank`: 0
273
+ - `ddp_backend`: None
274
+ - `tpu_num_cores`: None
275
+ - `tpu_metrics_debug`: False
276
+ - `debug`: []
277
+ - `dataloader_drop_last`: False
278
+ - `dataloader_num_workers`: 0
279
+ - `dataloader_prefetch_factor`: None
280
+ - `past_index`: -1
281
+ - `disable_tqdm`: False
282
+ - `remove_unused_columns`: True
283
+ - `label_names`: None
284
+ - `load_best_model_at_end`: True
285
+ - `ignore_data_skip`: False
286
+ - `fsdp`: []
287
+ - `fsdp_min_num_params`: 0
288
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
289
+ - `fsdp_transformer_layer_cls_to_wrap`: None
290
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
291
+ - `deepspeed`: None
292
+ - `label_smoothing_factor`: 0.0
293
+ - `optim`: adamw_torch
294
+ - `optim_args`: None
295
+ - `adafactor`: False
296
+ - `group_by_length`: False
297
+ - `length_column_name`: length
298
+ - `ddp_find_unused_parameters`: None
299
+ - `ddp_bucket_cap_mb`: None
300
+ - `ddp_broadcast_buffers`: False
301
+ - `dataloader_pin_memory`: True
302
+ - `dataloader_persistent_workers`: False
303
+ - `skip_memory_metrics`: True
304
+ - `use_legacy_prediction_loop`: False
305
+ - `push_to_hub`: False
306
+ - `resume_from_checkpoint`: None
307
+ - `hub_model_id`: None
308
+ - `hub_strategy`: every_save
309
+ - `hub_private_repo`: None
310
+ - `hub_always_push`: False
311
+ - `gradient_checkpointing`: False
312
+ - `gradient_checkpointing_kwargs`: None
313
+ - `include_inputs_for_metrics`: False
314
+ - `include_for_metrics`: []
315
+ - `eval_do_concat_batches`: True
316
+ - `fp16_backend`: auto
317
+ - `push_to_hub_model_id`: None
318
+ - `push_to_hub_organization`: None
319
+ - `mp_parameters`:
320
+ - `auto_find_batch_size`: False
321
+ - `full_determinism`: False
322
+ - `torchdynamo`: None
323
+ - `ray_scope`: last
324
+ - `ddp_timeout`: 1800
325
+ - `torch_compile`: False
326
+ - `torch_compile_backend`: None
327
+ - `torch_compile_mode`: None
328
+ - `dispatch_batches`: None
329
+ - `split_batches`: None
330
+ - `include_tokens_per_second`: False
331
+ - `include_num_input_tokens_seen`: False
332
+ - `neftune_noise_alpha`: None
333
+ - `optim_target_modules`: None
334
+ - `batch_eval_metrics`: False
335
+ - `eval_on_start`: False
336
+ - `use_liger_kernel`: False
337
+ - `eval_use_gather_object`: False
338
+ - `average_tokens_across_devices`: False
339
+ - `prompts`: None
340
+ - `batch_sampler`: batch_sampler
341
+ - `multi_dataset_batch_sampler`: proportional
342
+
343
+ </details>
344
+
345
+ ### Training Logs
346
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_ndcg@10 | NanoNFCorpus_ndcg@10 | NanoNQ_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
347
+ |:----------:|:---------:|:-------------:|:---------------:|:--------------------:|:--------------------:|:--------------------:|:--------------------------:|
348
+ | -1 | -1 | - | - | 0.0644 (-0.4760) | 0.2696 (-0.0554) | 0.0762 (-0.4245) | 0.1367 (-0.3186) |
349
+ | 0.0001 | 1 | 2.0486 | - | - | - | - | - |
350
+ | 0.0762 | 1000 | 2.0857 | - | - | - | - | - |
351
+ | 0.1525 | 2000 | 2.082 | - | - | - | - | - |
352
+ | 0.2287 | 3000 | 2.0758 | - | - | - | - | - |
353
+ | 0.3049 | 4000 | 2.0736 | 2.0711 | 0.5528 (+0.0124) | 0.3638 (+0.0388) | 0.6038 (+0.1032) | 0.5068 (+0.0514) |
354
+ | 0.3812 | 5000 | 2.0735 | - | - | - | - | - |
355
+ | 0.4574 | 6000 | 2.0685 | - | - | - | - | - |
356
+ | 0.5336 | 7000 | 2.0725 | - | - | - | - | - |
357
+ | 0.6098 | 8000 | 2.0746 | 2.0698 | 0.5251 (-0.0153) | 0.3446 (+0.0195) | 0.5542 (+0.0535) | 0.4746 (+0.0193) |
358
+ | 0.6861 | 9000 | 2.0759 | - | - | - | - | - |
359
+ | 0.7623 | 10000 | 2.0723 | - | - | - | - | - |
360
+ | 0.8385 | 11000 | 2.0787 | - | - | - | - | - |
361
+ | 0.9148 | 12000 | 2.0742 | 2.0697 | 0.5562 (+0.0157) | 0.3700 (+0.0450) | 0.6062 (+0.1056) | 0.5108 (+0.0554) |
362
+ | 0.9910 | 13000 | 2.0736 | - | - | - | - | - |
363
+ | 1.0672 | 14000 | 2.0715 | - | - | - | - | - |
364
+ | 1.1435 | 15000 | 2.073 | - | - | - | - | - |
365
+ | 1.2197 | 16000 | 2.0699 | 2.0696 | 0.5532 (+0.0128) | 0.3634 (+0.0384) | 0.6355 (+0.1349) | 0.5174 (+0.0620) |
366
+ | 1.2959 | 17000 | 2.0671 | - | - | - | - | - |
367
+ | 1.3722 | 18000 | 2.0682 | - | - | - | - | - |
368
+ | 1.4484 | 19000 | 2.0702 | - | - | - | - | - |
369
+ | **1.5246** | **20000** | **2.0699** | **2.0695** | **0.5787 (+0.0383)** | **0.3588 (+0.0337)** | **0.6221 (+0.1215)** | **0.5199 (+0.0645)** |
370
+ | 1.6009 | 21000 | 2.0689 | - | - | - | - | - |
371
+ | 1.6771 | 22000 | 2.0699 | - | - | - | - | - |
372
+ | 1.7533 | 23000 | 2.0667 | - | - | - | - | - |
373
+ | 1.8295 | 24000 | 2.0694 | 2.0694 | 0.5411 (+0.0006) | 0.3817 (+0.0567) | 0.6167 (+0.1161) | 0.5132 (+0.0578) |
374
+ | 1.9058 | 25000 | 2.0632 | - | - | - | - | - |
375
+ | 1.9820 | 26000 | 2.0721 | - | - | - | - | - |
376
+ | 2.0582 | 27000 | 2.0647 | - | - | - | - | - |
377
+ | 2.1345 | 28000 | 2.0688 | 2.0702 | 0.5746 (+0.0342) | 0.3845 (+0.0594) | 0.5908 (+0.0901) | 0.5166 (+0.0613) |
378
+ | 2.2107 | 29000 | 2.0635 | - | - | - | - | - |
379
+ | 2.2869 | 30000 | 2.0665 | - | - | - | - | - |
380
+ | 2.3632 | 31000 | 2.0643 | - | - | - | - | - |
381
+ | 2.4394 | 32000 | 2.0681 | 2.0699 | 0.5529 (+0.0125) | 0.3690 (+0.0440) | 0.5725 (+0.0718) | 0.4981 (+0.0428) |
382
+ | 2.5156 | 33000 | 2.0642 | - | - | - | - | - |
383
+ | 2.5919 | 34000 | 2.0613 | - | - | - | - | - |
384
+ | 2.6681 | 35000 | 2.0673 | - | - | - | - | - |
385
+ | 2.7443 | 36000 | 2.0641 | 2.0696 | 0.5534 (+0.0130) | 0.3701 (+0.0451) | 0.5639 (+0.0632) | 0.4958 (+0.0404) |
386
+ | 2.8206 | 37000 | 2.0645 | - | - | - | - | - |
387
+ | 2.8968 | 38000 | 2.0673 | - | - | - | - | - |
388
+ | 2.9730 | 39000 | 2.0656 | - | - | - | - | - |
389
+ | -1 | -1 | - | - | 0.5787 (+0.0383) | 0.3588 (+0.0337) | 0.6221 (+0.1215) | 0.5199 (+0.0645) |
390
+
391
+ * The bold row denotes the saved checkpoint.
392
+
393
+ ### Environmental Impact
394
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
395
+ - **Energy Consumed**: 0.532 kWh
396
+ - **Carbon Emitted**: 0.207 kg of CO2
397
+ - **Hours Used**: 1.708 hours
398
+
399
+ ### Training Hardware
400
+ - **On Cloud**: No
401
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
402
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
403
+ - **RAM Size**: 31.78 GB
404
+
405
+ ### Framework Versions
406
+ - Python: 3.11.6
407
+ - Sentence Transformers: 3.5.0.dev0
408
+ - Transformers: 4.48.3
409
+ - PyTorch: 2.5.0+cu121
410
+ - Accelerate: 1.4.0
411
+ - Datasets: 3.3.2
412
+ - Tokenizers: 0.21.0
413
+
414
+ ## Citation
415
+
416
+ ### BibTeX
417
+
418
+ #### Sentence Transformers
419
+ ```bibtex
420
+ @inproceedings{reimers-2019-sentence-bert,
421
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
422
+ author = "Reimers, Nils and Gurevych, Iryna",
423
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
424
+ month = "11",
425
+ year = "2019",
426
+ publisher = "Association for Computational Linguistics",
427
+ url = "https://arxiv.org/abs/1908.10084",
428
+ }
429
+ ```
430
+
431
+ #### ListNetLoss
432
+ ```bibtex
433
+ @inproceedings{cao2007learning,
434
+ title={Learning to rank: from pairwise approach to listwise approach},
435
+ author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
436
+ booktitle={Proceedings of the 24th international conference on Machine learning},
437
+ pages={129--136},
438
+ year={2007}
439
+ }
440
+ ```
441
+
442
+ <!--
443
+ ## Glossary
444
+
445
+ *Clearly define terms in order to be accessible across audiences.*
446
+ -->
447
+
448
+ <!--
449
+ ## Model Card Authors
450
+
451
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
452
+ -->
453
+
454
+ <!--
455
+ ## Model Card Contact
456
+
457
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
458
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/MiniLM-L12-H384-uncased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.48.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb79278d962aa7cca0c3c6c54103e31883db21d86a86421f7eeb958e2031e969
3
+ size 133464836
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff