Create train_script.py
Browse files- train_script.py +190 -0
train_script.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import traceback
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
from datasets import load_dataset
|
6 |
+
from datasets.load import load_from_disk
|
7 |
+
from torch import nn
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
from sentence_transformers.cross_encoder import CrossEncoder
|
12 |
+
from sentence_transformers.cross_encoder.evaluation.CENanoBEIREvaluator import CENanoBEIREvaluator
|
13 |
+
from sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator import CERerankingEvaluator
|
14 |
+
from sentence_transformers.cross_encoder.losses.BinaryCrossEntropyLoss import BinaryCrossEntropyLoss
|
15 |
+
from sentence_transformers.cross_encoder.losses.CachedMultipleNegativesRankingLoss import (
|
16 |
+
CachedMultipleNegativesRankingLoss,
|
17 |
+
)
|
18 |
+
from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer
|
19 |
+
from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments
|
20 |
+
from sentence_transformers.evaluation.SequentialEvaluator import SequentialEvaluator
|
21 |
+
from sentence_transformers.training_args import BatchSamplers
|
22 |
+
from sentence_transformers.util import mine_hard_negatives
|
23 |
+
|
24 |
+
|
25 |
+
def main():
|
26 |
+
model_name = "answerdotai/ModernBERT-base"
|
27 |
+
|
28 |
+
# Set the log level to INFO to get more information
|
29 |
+
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
|
30 |
+
|
31 |
+
train_batch_size = 64
|
32 |
+
num_epochs = 1
|
33 |
+
|
34 |
+
# 1. Define our CrossEncoder model
|
35 |
+
model = CrossEncoder(model_name)
|
36 |
+
print("Model max length:", model.max_length)
|
37 |
+
print("Model num labels:", model.num_labels)
|
38 |
+
|
39 |
+
# 2. Load the MS MARCO dataset:
|
40 |
+
logging.info("Read train dataset")
|
41 |
+
|
42 |
+
embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1")
|
43 |
+
|
44 |
+
full_dataset = load_dataset("sentence-transformers/natural-questions", split=f"train")
|
45 |
+
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
|
46 |
+
train_dataset = dataset_dict["train"]
|
47 |
+
eval_dataset = dataset_dict["test"]
|
48 |
+
|
49 |
+
# '''
|
50 |
+
hard_eval_dataset = mine_hard_negatives(
|
51 |
+
eval_dataset,
|
52 |
+
embedding_model,
|
53 |
+
corpus=full_dataset["answer"],
|
54 |
+
num_negatives=30,
|
55 |
+
batch_size=256,
|
56 |
+
positive_among_negatives=True,
|
57 |
+
as_triplets=False,
|
58 |
+
# faiss_batch_size=4096,
|
59 |
+
use_faiss=True,
|
60 |
+
)
|
61 |
+
print(hard_eval_dataset)
|
62 |
+
# # breakpoint()
|
63 |
+
# indices = []
|
64 |
+
# for sample in eval_dataset:
|
65 |
+
# try:
|
66 |
+
# idx = list(sample.values())[2:].index(sample["answer"])
|
67 |
+
# except ValueError:
|
68 |
+
# idx = len(eval_dataset.column_names) - 2
|
69 |
+
# indices.append(idx)
|
70 |
+
# print(sum(indices) / len(indices))
|
71 |
+
# breakpoint()
|
72 |
+
|
73 |
+
hard_train_dataset = mine_hard_negatives(
|
74 |
+
train_dataset,
|
75 |
+
embedding_model,
|
76 |
+
num_negatives=5, # 5 negatives per question-answer pair
|
77 |
+
margin=0, # Similarity between query and negative samples should be at least 0.1 less than query-positive similarity
|
78 |
+
range_min=0, # Skip the 10 most similar samples
|
79 |
+
range_max=100, # Consider only the 100 most similar samples
|
80 |
+
sampling_strategy="top", # Randomly sample negatives from the range
|
81 |
+
batch_size=256,
|
82 |
+
as_triplets=False, # We want 7 columns: query, positive, negative1, negative2, negative3, negative4, negative5
|
83 |
+
use_faiss=True,
|
84 |
+
)
|
85 |
+
# breakpoint()
|
86 |
+
# hard_train_dataset.save_to_disk("nq-train-hard-negatives")
|
87 |
+
# hard_eval_dataset.save_to_disk("nq-eval-hard-negatives")
|
88 |
+
# '''
|
89 |
+
# hard_train_dataset = load_from_disk("nq-train-hard-negatives")
|
90 |
+
# hard_eval_dataset = load_from_disk("nq-eval-hard-negatives")
|
91 |
+
|
92 |
+
def mapper(batch):
|
93 |
+
batch_size = len(batch["query"])
|
94 |
+
num_negatives = len(batch) - 2
|
95 |
+
num_candidates = len(batch) - 1
|
96 |
+
return {
|
97 |
+
"query": batch["query"] * num_candidates,
|
98 |
+
"response": sum(list(batch.values())[1:], []),
|
99 |
+
"label": [1] * batch_size + [0] * num_negatives * batch_size,
|
100 |
+
}
|
101 |
+
|
102 |
+
hard_train_dataset = hard_train_dataset.map(mapper, batched=True, remove_columns=hard_train_dataset.column_names)
|
103 |
+
eval_dataset = eval_dataset.map(mapper, batched=True, remove_columns=eval_dataset.column_names)
|
104 |
+
|
105 |
+
# 3. Define our training loss
|
106 |
+
loss = BinaryCrossEntropyLoss(model=model, pos_weight=torch.tensor(5))
|
107 |
+
|
108 |
+
# 4. Define the evaluator. We use the CENanoBEIREvaluator, which is a light-weight evaluator for English reranking
|
109 |
+
reranking_evaluator = CERerankingEvaluator(
|
110 |
+
samples=[
|
111 |
+
{
|
112 |
+
"query": sample["query"],
|
113 |
+
"positive": [sample["answer"]],
|
114 |
+
"negative": [sample[column_name] for column_name in hard_eval_dataset.column_names[2:]],
|
115 |
+
}
|
116 |
+
for sample in hard_eval_dataset
|
117 |
+
],
|
118 |
+
batch_size=train_batch_size,
|
119 |
+
negatives_are_ranked=True,
|
120 |
+
name="nq-dev",
|
121 |
+
)
|
122 |
+
nano_beir_evaluator = CENanoBEIREvaluator(
|
123 |
+
dataset_names=["msmarco", "nfcorpus", "nq"],
|
124 |
+
batch_size=train_batch_size,
|
125 |
+
)
|
126 |
+
evaluator = SequentialEvaluator([reranking_evaluator, nano_beir_evaluator])
|
127 |
+
evaluator(model)
|
128 |
+
|
129 |
+
# 5. Define the training arguments
|
130 |
+
short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
|
131 |
+
run_name = f"reranker-{short_model_name}-nq-bce-static-retriever-hardest"
|
132 |
+
args = CrossEncoderTrainingArguments(
|
133 |
+
# Required parameter:
|
134 |
+
output_dir=f"models/{run_name}",
|
135 |
+
# Optional training parameters:
|
136 |
+
num_train_epochs=num_epochs,
|
137 |
+
per_device_train_batch_size=train_batch_size,
|
138 |
+
per_device_eval_batch_size=train_batch_size,
|
139 |
+
learning_rate=2e-5,
|
140 |
+
warmup_ratio=0.1,
|
141 |
+
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
|
142 |
+
bf16=True, # Set to True if you have a GPU that supports BF16
|
143 |
+
dataloader_num_workers=4,
|
144 |
+
# (Cached)MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
145 |
+
load_best_model_at_end=True,
|
146 |
+
metric_for_best_model="eval_nq-dev_ndcg@10",
|
147 |
+
# Optional tracking/debugging parameters:
|
148 |
+
eval_strategy="steps",
|
149 |
+
eval_steps=1000,
|
150 |
+
save_strategy="steps",
|
151 |
+
save_steps=1000,
|
152 |
+
save_total_limit=2,
|
153 |
+
logging_steps=200,
|
154 |
+
logging_first_step=True,
|
155 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
156 |
+
seed=12,
|
157 |
+
)
|
158 |
+
|
159 |
+
# 6. Create the trainer & start training
|
160 |
+
trainer = CrossEncoderTrainer(
|
161 |
+
model=model,
|
162 |
+
args=args,
|
163 |
+
train_dataset=hard_train_dataset,
|
164 |
+
eval_dataset=eval_dataset,
|
165 |
+
loss=loss,
|
166 |
+
evaluator=evaluator,
|
167 |
+
)
|
168 |
+
trainer.train()
|
169 |
+
|
170 |
+
# 7. Evaluate the final model, useful to include these in the model card
|
171 |
+
evaluator(model)
|
172 |
+
|
173 |
+
# 8. Save the final model
|
174 |
+
final_output_dir = f"models/{run_name}/final"
|
175 |
+
model.save_pretrained(final_output_dir)
|
176 |
+
|
177 |
+
# 9. (Optional) save the model to the Hugging Face Hub!
|
178 |
+
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
|
179 |
+
try:
|
180 |
+
model.push_to_hub(run_name)
|
181 |
+
except Exception:
|
182 |
+
logging.error(
|
183 |
+
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
|
184 |
+
f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
|
185 |
+
f"and saving it using `model.push_to_hub('{run_name}')`."
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
main()
|