File size: 27,648 Bytes
71bd449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- text-classification
- generated_from_trainer
- dataset_size:397226027
- loss:BinaryCrossEntropyLoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- sentence-transformers/msmarco
pipeline_tag: text-classification
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
results: []
---
# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co./microsoft/MiniLM-L12-H384-uncased) on the [ms-marco-shuffled](https://huggingface.co./datasets/tomaarsen/ms-marco-shuffled) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co./microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
- [ms-marco-shuffled](https://huggingface.co./datasets/tomaarsen/ms-marco-shuffled)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co./models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-MiniLM-L12-H384-uncased-msmarco-bce")
# Get scores for pairs of texts
pairs = [
['what is a jewel yam', 'Wild Yam can be very beneficial for nervousness, restlessness and other nervous conditions. As a stimulant for increased bile flow, it can help to relieve hepatic congestion, bilious colic and gallstones.'],
['hours of daytona', '24 Hours of Daytona. The 24 Hours of Daytona, currently known as the Rolex 24 At Daytona for sponsorship reasons, is a 24-hour sports car endurance race held annually at Daytona International Speedway in Daytona Beach, Florida. It is run on a 3.56-mile (5.73 km) combined road course, utilizing portions of the NASCAR tri-oval and an infield road course.'],
['how much do autozone workers get paid', 'The typical AutoZone Sales Associate salary is $9. Sales Associate salaries at AutoZone can range from $7-$12. This estimate is based upon 59 AutoZone Sales Associate salary report(s) provided by employees or estimated based upon statistical methods. See all Sales Associate salaries to learn how this stacks up in the market.'],
['what are the special sensory receptors', 'Sensory Neurons. Sensory Neurons: + add to my flashcards cite this term. You have a few different types of neurons in your body including interneurons, motor neurons, and sensory neurons. Sensory neurons (also known as Afferent Neurons) are responsible for bringing information from sensory receptors (like the nerves in your hand) to the central nervous system (spinal cord and brain).'],
['how long to cook salmon on the grill', 'Place the bag with the marinade and salmon fillets in the refrigerator for 30 minutes. 1 Salmon, like all fish, is not as dense as red meats and poultry. 2 As a result, it does not need to be marinaded for long in order to absorb flavor.3 Remove the salmon from the refrigerator at least 10 minutes prior to cooking.lace the broiler pan 5 1/2 inches (14 cm) away from the top heating element and cook the salmon until done. 1 The salmon is done when you can effortlessly flake the fillets with a fork. 2 The center should be opaque.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'what is a jewel yam',
[
'Wild Yam can be very beneficial for nervousness, restlessness and other nervous conditions. As a stimulant for increased bile flow, it can help to relieve hepatic congestion, bilious colic and gallstones.',
'24 Hours of Daytona. The 24 Hours of Daytona, currently known as the Rolex 24 At Daytona for sponsorship reasons, is a 24-hour sports car endurance race held annually at Daytona International Speedway in Daytona Beach, Florida. It is run on a 3.56-mile (5.73 km) combined road course, utilizing portions of the NASCAR tri-oval and an infield road course.',
'The typical AutoZone Sales Associate salary is $9. Sales Associate salaries at AutoZone can range from $7-$12. This estimate is based upon 59 AutoZone Sales Associate salary report(s) provided by employees or estimated based upon statistical methods. See all Sales Associate salaries to learn how this stacks up in the market.',
'Sensory Neurons. Sensory Neurons: + add to my flashcards cite this term. You have a few different types of neurons in your body including interneurons, motor neurons, and sensory neurons. Sensory neurons (also known as Afferent Neurons) are responsible for bringing information from sensory receptors (like the nerves in your hand) to the central nervous system (spinal cord and brain).',
'Place the bag with the marinade and salmon fillets in the refrigerator for 30 minutes. 1 Salmon, like all fish, is not as dense as red meats and poultry. 2 As a result, it does not need to be marinaded for long in order to absorb flavor.3 Remove the salmon from the refrigerator at least 10 minutes prior to cooking.lace the broiler pan 5 1/2 inches (14 cm) away from the top heating element and cook the salmon until done. 1 The salmon is done when you can effortlessly flake the fillets with a fork. 2 The center should be opaque.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>CERerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator)
| Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.6127 (+0.1231) | 0.3432 (+0.0728) | 0.6921 (+0.2715) |
| mrr@10 | 0.6019 (+0.1244) | 0.5456 (+0.0457) | 0.7062 (+0.2795) |
| **ndcg@10** | **0.6648 (+0.1244)** | **0.3769 (+0.0519)** | **0.7462 (+0.2455)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>CENanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CENanoBEIREvaluator)
| Metric | Value |
|:------------|:---------------------|
| map | 0.5493 (+0.1558) |
| mrr@10 | 0.6179 (+0.1499) |
| **ndcg@10** | **0.5960 (+0.1406)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### ms-marco-shuffled
* Dataset: [ms-marco-shuffled](https://huggingface.co./datasets/tomaarsen/ms-marco-shuffled) at [88847c6](https://huggingface.co./datasets/tomaarsen/ms-marco-shuffled/tree/88847c65252168a8c2504664289ef21a9df0ca74)
* Size: 397,226,027 training samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | query | passage | score |
|:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 10 characters</li><li>mean: 34.03 characters</li><li>max: 148 characters</li></ul> | <ul><li>min: 72 characters</li><li>mean: 345.31 characters</li><li>max: 913 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> |
* Samples:
| query | passage | score |
|:------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>when was ron marhofer founded?</code> | <code>What are the birthdays of Ron Shirley Bobby Brantley and Amy Shirley from Lizard Lick Towing? Ron Shirley's birthday is April 13. His wife Amy Shirley celebrates her birthday on May 4, and Bobby Brantley's birthday is September 26.</code> | <code>0.0</code> |
| <code>what should the average medical assistant make</code> | <code>For example, the Bureau of Labor Statistics reports that as of May 2014, medical assistant jobs located in Offices of Physicians paid about $31,230 a year on average c. These roles (in Offices of Physicians) made up a large portion of medical assistant jobs, totaling 349,370 positions as of May 2014 c. General Medical and Surgical hospitals were another large employer, carrying 85,040 medical assistants c on their payrolls.</code> | <code>1.0</code> |
| <code>what type of rock form in warm ocean bottoms</code> | <code>Second, sedimentary rocks form on the bottom of the ocean when particles rain down from the surface. These particles can become compressed and cemented to form limestone. Fossilized sea creatures are often found in these rocks. Most of the mountains around Las Vegas are composed of sedimentary rocks. Red Rock Canyon (photo) provides a spectacular example of both types: the gray mountains are limestone, and the red-and-white hills are sandstone.</code> | <code>1.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fct": "torch.nn.modules.linear.Identity",
"pos_weight": null
}
```
### Evaluation Dataset
#### ms-marco-shuffled
* Dataset: [ms-marco-shuffled](https://huggingface.co./datasets/tomaarsen/ms-marco-shuffled) at [88847c6](https://huggingface.co./datasets/tomaarsen/ms-marco-shuffled/tree/88847c65252168a8c2504664289ef21a9df0ca74)
* Size: 397,226,027 evaluation samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | query | passage | score |
|:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 11 characters</li><li>mean: 33.94 characters</li><li>max: 164 characters</li></ul> | <ul><li>min: 58 characters</li><li>mean: 346.39 characters</li><li>max: 917 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
| query | passage | score |
|:---------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>what is a jewel yam</code> | <code>Wild Yam can be very beneficial for nervousness, restlessness and other nervous conditions. As a stimulant for increased bile flow, it can help to relieve hepatic congestion, bilious colic and gallstones.</code> | <code>0.0</code> |
| <code>hours of daytona</code> | <code>24 Hours of Daytona. The 24 Hours of Daytona, currently known as the Rolex 24 At Daytona for sponsorship reasons, is a 24-hour sports car endurance race held annually at Daytona International Speedway in Daytona Beach, Florida. It is run on a 3.56-mile (5.73 km) combined road course, utilizing portions of the NASCAR tri-oval and an infield road course.</code> | <code>1.0</code> |
| <code>how much do autozone workers get paid</code> | <code>The typical AutoZone Sales Associate salary is $9. Sales Associate salaries at AutoZone can range from $7-$12. This estimate is based upon 59 AutoZone Sales Associate salary report(s) provided by employees or estimated based upon statistical methods. See all Sales Associate salaries to learn how this stacks up in the market.</code> | <code>1.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fct": "torch.nn.modules.linear.Identity",
"pos_weight": null
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_ndcg@10 | NanoNFCorpus_ndcg@10 | NanoNQ_ndcg@10 | NanoBEIR_mean_ndcg@10 |
|:----------:|:---------:|:-------------:|:---------------:|:--------------------:|:--------------------:|:--------------------:|:---------------------:|
| -1 | -1 | - | - | 0.0324 (-0.5080) | 0.2439 (-0.0811) | 0.0361 (-0.4646) | 0.1041 (-0.3512) |
| 0.0000 | 1 | 0.6941 | - | - | - | - | - |
| 0.0322 | 1000 | 0.5117 | - | - | - | - | - |
| 0.0643 | 2000 | 0.2604 | - | - | - | - | - |
| 0.0965 | 3000 | 0.2258 | - | - | - | - | - |
| 0.1286 | 4000 | 0.2115 | - | - | - | - | - |
| 0.1608 | 5000 | 0.1995 | 0.1879 | 0.6145 (+0.0741) | 0.4002 (+0.0751) | 0.6970 (+0.1964) | 0.5706 (+0.1152) |
| 0.1930 | 6000 | 0.1924 | - | - | - | - | - |
| 0.2251 | 7000 | 0.1914 | - | - | - | - | - |
| 0.2573 | 8000 | 0.1859 | - | - | - | - | - |
| 0.2894 | 9000 | 0.1802 | - | - | - | - | - |
| 0.3216 | 10000 | 0.1791 | 0.1628 | 0.6311 (+0.0906) | 0.3795 (+0.0545) | 0.7347 (+0.2341) | 0.5818 (+0.1264) |
| 0.3538 | 11000 | 0.1732 | - | - | - | - | - |
| 0.3859 | 12000 | 0.1713 | - | - | - | - | - |
| 0.4181 | 13000 | 0.1756 | - | - | - | - | - |
| 0.4502 | 14000 | 0.1643 | - | - | - | - | - |
| 0.4824 | 15000 | 0.166 | 0.1531 | 0.6540 (+0.1136) | 0.3830 (+0.0579) | 0.7315 (+0.2309) | 0.5895 (+0.1341) |
| 0.5146 | 16000 | 0.161 | - | - | - | - | - |
| 0.5467 | 17000 | 0.1617 | - | - | - | - | - |
| 0.5789 | 18000 | 0.1612 | - | - | - | - | - |
| 0.6111 | 19000 | 0.1591 | - | - | - | - | - |
| **0.6432** | **20000** | **0.1599** | **0.1428** | **0.6648 (+0.1244)** | **0.3769 (+0.0519)** | **0.7462 (+0.2455)** | **0.5960 (+0.1406)** |
| 0.6754 | 21000 | 0.1599 | - | - | - | - | - |
| 0.7075 | 22000 | 0.1523 | - | - | - | - | - |
| 0.7397 | 23000 | 0.1525 | - | - | - | - | - |
| 0.7719 | 24000 | 0.1549 | - | - | - | - | - |
| 0.8040 | 25000 | 0.1515 | 0.1386 | 0.6682 (+0.1278) | 0.3686 (+0.0436) | 0.7481 (+0.2474) | 0.5950 (+0.1396) |
| 0.8362 | 26000 | 0.1556 | - | - | - | - | - |
| 0.8683 | 27000 | 0.1501 | - | - | - | - | - |
| 0.9005 | 28000 | 0.1522 | - | - | - | - | - |
| 0.9327 | 29000 | 0.1493 | - | - | - | - | - |
| 0.9648 | 30000 | 0.1509 | 0.1354 | 0.6805 (+0.1400) | 0.3593 (+0.0343) | 0.7439 (+0.2433) | 0.5946 (+0.1392) |
| 0.9970 | 31000 | 0.1481 | - | - | - | - | - |
| -1 | -1 | - | - | 0.6648 (+0.1244) | 0.3769 (+0.0519) | 0.7462 (+0.2455) | 0.5960 (+0.1406) |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.6.0.dev20241112+cu121
- Accelerate: 1.2.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |