tomaarsen HF staff commited on
Commit
bf10921
·
verified ·
1 Parent(s): f6e4bce

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:50000
11
+ - loss:CachedGISTEmbedLoss
12
+ base_model: microsoft/mpnet-base
13
+ widget:
14
+ - source_sentence: who ordered the charge of the light brigade
15
+ sentences:
16
+ - Charge of the Light Brigade The Charge of the Light Brigade was a charge of British
17
+ light cavalry led by Lord Cardigan against Russian forces during the Battle of
18
+ Balaclava on 25 October 1854 in the Crimean War. Lord Raglan, overall commander
19
+ of the British forces, had intended to send the Light Brigade to prevent the Russians
20
+ from removing captured guns from overrun Turkish positions, a task well-suited
21
+ to light cavalry.
22
+ - UNICEF The United Nations International Children's Emergency Fund was created
23
+ by the United Nations General Assembly on 11 December 1946, to provide emergency
24
+ food and healthcare to children in countries that had been devastated by World
25
+ War II. The Polish physician Ludwik Rajchman is widely regarded as the founder
26
+ of UNICEF and served as its first chairman from 1946. On Rajchman's suggestion,
27
+ the American Maurice Pate was appointed its first executive director, serving
28
+ from 1947 until his death in 1965.[5][6] In 1950, UNICEF's mandate was extended
29
+ to address the long-term needs of children and women in developing countries everywhere.
30
+ In 1953 it became a permanent part of the United Nations System, and the words
31
+ "international" and "emergency" were dropped from the organization's name, making
32
+ it simply the United Nations Children's Fund, retaining the original acronym,
33
+ "UNICEF".[3]
34
+ - Marcus Jordan Marcus James Jordan (born December 24, 1990) is an American former
35
+ college basketball player who played for the UCF Knights men's basketball team
36
+ of Conference USA.[1] He is the son of retired Hall of Fame basketball player
37
+ Michael Jordan.
38
+ - source_sentence: what part of the cow is the rib roast
39
+ sentences:
40
+ - Standing rib roast A standing rib roast, also known as prime rib, is a cut of
41
+ beef from the primal rib, one of the nine primal cuts of beef. While the entire
42
+ rib section comprises ribs six through 12, a standing rib roast may contain anywhere
43
+ from two to seven ribs.
44
+ - Blaine Anderson Kurt begins to mend their relationship in "Thanksgiving", just
45
+ before New Directions loses at Sectionals to the Warblers, and they spend Christmas
46
+ together in New York City.[29][30] Though he and Kurt continue to be on good terms,
47
+ Blaine finds himself developing a crush on his best friend, Sam, which he knows
48
+ will come to nothing as he knows Sam is not gay; the two of them team up to find
49
+ evidence that the Warblers cheated at Sectionals, which means New Directions will
50
+ be competing at Regionals. He ends up going to the Sadie Hawkins dance with Tina
51
+ Cohen-Chang (Jenna Ushkowitz), who has developed a crush on him, but as friends
52
+ only.[31] When Kurt comes to Lima for the wedding of glee club director Will (Matthew
53
+ Morrison) and Emma (Jayma Mays)—which Emma flees—he and Blaine make out beforehand,
54
+ and sleep together afterward, though they do not resume a permanent relationship.[32]
55
+ - 'Soviet Union The Soviet Union (Russian: Сове́тский Сою́з, tr. Sovétsky Soyúz,
56
+ IPA: [sɐˈvʲɛt͡skʲɪj sɐˈjus] ( listen)), officially the Union of Soviet Socialist
57
+ Republics (Russian: Сою́з Сове́тских Социалисти́ческих Респу́блик, tr. Soyúz Sovétskikh
58
+ Sotsialistícheskikh Respúblik, IPA: [sɐˈjus sɐˈvʲɛtskʲɪx sətsɨəlʲɪsˈtʲitɕɪskʲɪx
59
+ rʲɪˈspublʲɪk] ( listen)), abbreviated as the USSR (Russian: СССР, tr. SSSR), was
60
+ a socialist state in Eurasia that existed from 1922 to 1991. Nominally a union
61
+ of multiple national Soviet republics,[a] its government and economy were highly
62
+ centralized. The country was a one-party state, governed by the Communist Party
63
+ with Moscow as its capital in its largest republic, the Russian Soviet Federative
64
+ Socialist Republic. The Russian nation had constitutionally equal status among
65
+ the many nations of the union but exerted de facto dominance in various respects.[7]
66
+ Other major urban centres were Leningrad, Kiev, Minsk, Alma-Ata and Novosibirsk.
67
+ The Soviet Union was one of the five recognized nuclear weapons states and possessed
68
+ the largest stockpile of weapons of mass destruction.[8] It was a founding permanent
69
+ member of the United Nations Security Council, as well as a member of the Organization
70
+ for Security and Co-operation in Europe (OSCE) and the leading member of the Council
71
+ for Mutual Economic Assistance (CMEA) and the Warsaw Pact.'
72
+ - source_sentence: what is the current big bang theory season
73
+ sentences:
74
+ - Byzantine army From the seventh to the 12th centuries, the Byzantine army was
75
+ among the most powerful and effective military forces in the world – neither
76
+ Middle Ages Europe nor (following its early successes) the fracturing Caliphate
77
+ could match the strategies and the efficiency of the Byzantine army. Restricted
78
+ to a largely defensive role in the 7th to mid-9th centuries, the Byzantines developed
79
+ the theme-system to counter the more powerful Caliphate. From the mid-9th century,
80
+ however, they gradually went on the offensive, culminating in the great conquests
81
+ of the 10th century under a series of soldier-emperors such as Nikephoros II Phokas,
82
+ John Tzimiskes and Basil II. The army they led was less reliant on the militia
83
+ of the themes; it was by now a largely professional force, with a strong and well-drilled
84
+ infantry at its core and augmented by a revived heavy cavalry arm. With one of
85
+ the most powerful economies in the world at the time, the Empire had the resources
86
+ to put to the field a powerful host when needed, in order to reclaim its long-lost
87
+ territories.
88
+ - The Big Bang Theory The Big Bang Theory is an American television sitcom created
89
+ by Chuck Lorre and Bill Prady, both of whom serve as executive producers on the
90
+ series, along with Steven Molaro. All three also serve as head writers. The show
91
+ premiered on CBS on September 24, 2007.[3] The series' tenth season premiered
92
+ on September 19, 2016.[4] In March 2017, the series was renewed for two additional
93
+ seasons, bringing its total to twelve, and running through the 2018–19 television
94
+ season. The eleventh season is set to premiere on September 25, 2017.[5]
95
+ - 2016 NCAA Division I Softball Tournament The 2016 NCAA Division I Softball Tournament
96
+ was held from May 20 through June 8, 2016 as the final part of the 2016 NCAA Division
97
+ I softball season. The 64 NCAA Division I college softball teams were to be selected
98
+ out of an eligible 293 teams on May 15, 2016. Thirty-two teams were awarded an
99
+ automatic bid as champions of their conference, and thirty-two teams were selected
100
+ at-large by the NCAA Division I softball selection committee. The tournament culminated
101
+ with eight teams playing in the 2016 Women's College World Series at ASA Hall
102
+ of Fame Stadium in Oklahoma City in which the Oklahoma Sooners were crowned the
103
+ champions.
104
+ - source_sentence: what happened to tates mom on days of our lives
105
+ sentences:
106
+ - 'Paige O''Hara Donna Paige Helmintoller, better known as Paige O''Hara (born May
107
+ 10, 1956),[1] is an American actress, voice actress, singer and painter. O''Hara
108
+ began her career as a Broadway actress in 1983 when she portrayed Ellie May Chipley
109
+ in the musical Showboat. In 1991, she made her motion picture debut in Disney''s
110
+ Beauty and the Beast, in which she voiced the film''s heroine, Belle. Following
111
+ the critical and commercial success of Beauty and the Beast, O''Hara reprised
112
+ her role as Belle in the film''s two direct-to-video follow-ups, Beauty and the
113
+ Beast: The Enchanted Christmas and Belle''s Magical World.'
114
+ - M. Shadows Matthew Charles Sanders (born July 31, 1981), better known as M. Shadows,
115
+ is an American singer, songwriter, and musician. He is best known as the lead
116
+ vocalist, songwriter, and a founding member of the American heavy metal band Avenged
117
+ Sevenfold. In 2017, he was voted 3rd in the list of Top 25 Greatest Modern Frontmen
118
+ by Ultimate Guitar.[1]
119
+ - Theresa Donovan In July 2013, Jeannie returns to Salem, this time going by her
120
+ middle name, Theresa. Initially, she strikes up a connection with resident bad
121
+ boy JJ Deveraux (Casey Moss) while trying to secure some pot.[28] During a confrontation
122
+ with JJ and his mother Jennifer Horton (Melissa Reeves) in her office, her aunt
123
+ Kayla confirms that Theresa is in fact Jeannie and that Jen promised to hire her
124
+ as her assistant, a promise she reluctantly agrees to. Kayla reminds Theresa it
125
+ is her last chance at a fresh start.[29] Theresa also strikes up a bad first impression
126
+ with Jennifer's daughter Abigail Deveraux (Kate Mansi) when Abigail smells pot
127
+ on Theresa in her mother's office.[30] To continue to battle against Jennifer,
128
+ she teams up with Anne Milbauer (Meredith Scott Lynn) in hopes of exacting her
129
+ perfect revenge. In a ploy, Theresa reveals her intentions to hopefully woo Dr.
130
+ Daniel Jonas (Shawn Christian). After sleeping with JJ, Theresa overdoses on marijuana
131
+ and GHB. Upon hearing of their daughter's overdose and continuing problems, Shane
132
+ and Kimberly return to town in the hopes of handling their daughter's problem,
133
+ together. After believing that Theresa has a handle on her addictions, Shane and
134
+ Kimberly leave town together. Theresa then teams up with hospital co-worker Anne
135
+ Milbauer (Meredith Scott Lynn) to conspire against Jennifer, using Daniel as a
136
+ way to hurt their relationship. In early 2014, following a Narcotics Anonymous
137
+ (NA) meeting, she begins a sexual and drugged-fused relationship with Brady Black
138
+ (Eric Martsolf). In 2015, after it is found that Kristen DiMera (Eileen Davidson)
139
+ stole Theresa's embryo and carried it to term, Brady and Melanie Jonas return
140
+ her son, Christopher, to her and Brady, and the pair rename him Tate. When Theresa
141
+ moves into the Kiriakis mansion, tensions arise between her and Victor. She eventually
142
+ expresses her interest in purchasing Basic Black and running it as her own fashion
143
+ company, with financial backing from Maggie Horton (Suzanne Rogers). In the hopes
144
+ of finding the right partner, she teams up with Kate Roberts (Lauren Koslow) and
145
+ Nicole Walker (Arianne Zucker) to achieve the goal of purchasing Basic Black,
146
+ with Kate and Nicole's business background and her own interest in fashion design.
147
+ As she and Brady share several instances of rekindling their romance, she is kicked
148
+ out of the mansion by Victor; as a result, Brady quits Titan and moves in with
149
+ Theresa and Tate, in their own penthouse.
150
+ - source_sentence: where does the last name francisco come from
151
+ sentences:
152
+ - Francisco Francisco is the Spanish and Portuguese form of the masculine given
153
+ name Franciscus (corresponding to English Francis).
154
+ - 'Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah),
155
+ is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the
156
+ Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls
157
+ (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia,
158
+ born as Hadassah but known as Esther, who becomes queen of Persia and thwarts
159
+ a genocide of her people. The story forms the core of the Jewish festival of Purim,
160
+ during which it is read aloud twice: once in the evening and again the following
161
+ morning. The books of Esther and Song of Songs are the only books in the Hebrew
162
+ Bible that do not explicitly mention God.[2]'
163
+ - Times Square Times Square is a major commercial intersection, tourist destination,
164
+ entertainment center and neighborhood in the Midtown Manhattan section of New
165
+ York City at the junction of Broadway and Seventh Avenue. It stretches from West
166
+ 42nd to West 47th Streets.[1] Brightly adorned with billboards and advertisements,
167
+ Times Square is sometimes referred to as "The Crossroads of the World",[2] "The
168
+ Center of the Universe",[3] "the heart of The Great White Way",[4][5][6] and the
169
+ "heart of the world".[7] One of the world's busiest pedestrian areas,[8] it is
170
+ also the hub of the Broadway Theater District[9] and a major center of the world's
171
+ entertainment industry.[10] Times Square is one of the world's most visited tourist
172
+ attractions, drawing an estimated 50 million visitors annually.[11] Approximately
173
+ 330,000 people pass through Times Square daily,[12] many of them tourists,[13]
174
+ while over 460,000 pedestrians walk through Times Square on its busiest days.[7]
175
+ datasets:
176
+ - sentence-transformers/natural-questions
177
+ pipeline_tag: sentence-similarity
178
+ library_name: sentence-transformers
179
+ metrics:
180
+ - cosine_accuracy@1
181
+ - cosine_accuracy@3
182
+ - cosine_accuracy@5
183
+ - cosine_accuracy@10
184
+ - cosine_precision@1
185
+ - cosine_precision@3
186
+ - cosine_precision@5
187
+ - cosine_precision@10
188
+ - cosine_recall@1
189
+ - cosine_recall@3
190
+ - cosine_recall@5
191
+ - cosine_recall@10
192
+ - cosine_ndcg@10
193
+ - cosine_mrr@10
194
+ - cosine_map@100
195
+ co2_eq_emissions:
196
+ emissions: 59.31009589078217
197
+ energy_consumed: 0.15258500314066348
198
+ source: codecarbon
199
+ training_type: fine-tuning
200
+ on_cloud: false
201
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
202
+ ram_total_size: 31.777088165283203
203
+ hours_used: 0.396
204
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
205
+ model-index:
206
+ - name: MPNet base trained on Natural Questions pairs
207
+ results:
208
+ - task:
209
+ type: information-retrieval
210
+ name: Information Retrieval
211
+ dataset:
212
+ name: NanoClimateFEVER
213
+ type: NanoClimateFEVER
214
+ metrics:
215
+ - type: cosine_accuracy@1
216
+ value: 0.16
217
+ name: Cosine Accuracy@1
218
+ - type: cosine_accuracy@3
219
+ value: 0.34
220
+ name: Cosine Accuracy@3
221
+ - type: cosine_accuracy@5
222
+ value: 0.56
223
+ name: Cosine Accuracy@5
224
+ - type: cosine_accuracy@10
225
+ value: 0.64
226
+ name: Cosine Accuracy@10
227
+ - type: cosine_precision@1
228
+ value: 0.16
229
+ name: Cosine Precision@1
230
+ - type: cosine_precision@3
231
+ value: 0.12
232
+ name: Cosine Precision@3
233
+ - type: cosine_precision@5
234
+ value: 0.128
235
+ name: Cosine Precision@5
236
+ - type: cosine_precision@10
237
+ value: 0.08199999999999999
238
+ name: Cosine Precision@10
239
+ - type: cosine_recall@1
240
+ value: 0.06
241
+ name: Cosine Recall@1
242
+ - type: cosine_recall@3
243
+ value: 0.12166666666666666
244
+ name: Cosine Recall@3
245
+ - type: cosine_recall@5
246
+ value: 0.24833333333333332
247
+ name: Cosine Recall@5
248
+ - type: cosine_recall@10
249
+ value: 0.31566666666666665
250
+ name: Cosine Recall@10
251
+ - type: cosine_ndcg@10
252
+ value: 0.22803817515986124
253
+ name: Cosine Ndcg@10
254
+ - type: cosine_mrr@10
255
+ value: 0.30941269841269836
256
+ name: Cosine Mrr@10
257
+ - type: cosine_map@100
258
+ value: 0.1655130902515993
259
+ name: Cosine Map@100
260
+ - task:
261
+ type: information-retrieval
262
+ name: Information Retrieval
263
+ dataset:
264
+ name: NanoDBPedia
265
+ type: NanoDBPedia
266
+ metrics:
267
+ - type: cosine_accuracy@1
268
+ value: 0.52
269
+ name: Cosine Accuracy@1
270
+ - type: cosine_accuracy@3
271
+ value: 0.62
272
+ name: Cosine Accuracy@3
273
+ - type: cosine_accuracy@5
274
+ value: 0.7
275
+ name: Cosine Accuracy@5
276
+ - type: cosine_accuracy@10
277
+ value: 0.78
278
+ name: Cosine Accuracy@10
279
+ - type: cosine_precision@1
280
+ value: 0.52
281
+ name: Cosine Precision@1
282
+ - type: cosine_precision@3
283
+ value: 0.36
284
+ name: Cosine Precision@3
285
+ - type: cosine_precision@5
286
+ value: 0.364
287
+ name: Cosine Precision@5
288
+ - type: cosine_precision@10
289
+ value: 0.322
290
+ name: Cosine Precision@10
291
+ - type: cosine_recall@1
292
+ value: 0.0336711515516074
293
+ name: Cosine Recall@1
294
+ - type: cosine_recall@3
295
+ value: 0.06005334302891617
296
+ name: Cosine Recall@3
297
+ - type: cosine_recall@5
298
+ value: 0.1119370784549358
299
+ name: Cosine Recall@5
300
+ - type: cosine_recall@10
301
+ value: 0.1974683849453542
302
+ name: Cosine Recall@10
303
+ - type: cosine_ndcg@10
304
+ value: 0.37302114460618035
305
+ name: Cosine Ndcg@10
306
+ - type: cosine_mrr@10
307
+ value: 0.5887222222222221
308
+ name: Cosine Mrr@10
309
+ - type: cosine_map@100
310
+ value: 0.2524550843440785
311
+ name: Cosine Map@100
312
+ - task:
313
+ type: information-retrieval
314
+ name: Information Retrieval
315
+ dataset:
316
+ name: NanoFEVER
317
+ type: NanoFEVER
318
+ metrics:
319
+ - type: cosine_accuracy@1
320
+ value: 0.28
321
+ name: Cosine Accuracy@1
322
+ - type: cosine_accuracy@3
323
+ value: 0.5
324
+ name: Cosine Accuracy@3
325
+ - type: cosine_accuracy@5
326
+ value: 0.52
327
+ name: Cosine Accuracy@5
328
+ - type: cosine_accuracy@10
329
+ value: 0.62
330
+ name: Cosine Accuracy@10
331
+ - type: cosine_precision@1
332
+ value: 0.28
333
+ name: Cosine Precision@1
334
+ - type: cosine_precision@3
335
+ value: 0.16666666666666663
336
+ name: Cosine Precision@3
337
+ - type: cosine_precision@5
338
+ value: 0.10800000000000001
339
+ name: Cosine Precision@5
340
+ - type: cosine_precision@10
341
+ value: 0.064
342
+ name: Cosine Precision@10
343
+ - type: cosine_recall@1
344
+ value: 0.28
345
+ name: Cosine Recall@1
346
+ - type: cosine_recall@3
347
+ value: 0.48
348
+ name: Cosine Recall@3
349
+ - type: cosine_recall@5
350
+ value: 0.51
351
+ name: Cosine Recall@5
352
+ - type: cosine_recall@10
353
+ value: 0.6
354
+ name: Cosine Recall@10
355
+ - type: cosine_ndcg@10
356
+ value: 0.4358687601068153
357
+ name: Cosine Ndcg@10
358
+ - type: cosine_mrr@10
359
+ value: 0.38569047619047614
360
+ name: Cosine Mrr@10
361
+ - type: cosine_map@100
362
+ value: 0.3903171462871314
363
+ name: Cosine Map@100
364
+ - task:
365
+ type: information-retrieval
366
+ name: Information Retrieval
367
+ dataset:
368
+ name: NanoFiQA2018
369
+ type: NanoFiQA2018
370
+ metrics:
371
+ - type: cosine_accuracy@1
372
+ value: 0.14
373
+ name: Cosine Accuracy@1
374
+ - type: cosine_accuracy@3
375
+ value: 0.32
376
+ name: Cosine Accuracy@3
377
+ - type: cosine_accuracy@5
378
+ value: 0.36
379
+ name: Cosine Accuracy@5
380
+ - type: cosine_accuracy@10
381
+ value: 0.46
382
+ name: Cosine Accuracy@10
383
+ - type: cosine_precision@1
384
+ value: 0.14
385
+ name: Cosine Precision@1
386
+ - type: cosine_precision@3
387
+ value: 0.1333333333333333
388
+ name: Cosine Precision@3
389
+ - type: cosine_precision@5
390
+ value: 0.1
391
+ name: Cosine Precision@5
392
+ - type: cosine_precision@10
393
+ value: 0.07
394
+ name: Cosine Precision@10
395
+ - type: cosine_recall@1
396
+ value: 0.06933333333333333
397
+ name: Cosine Recall@1
398
+ - type: cosine_recall@3
399
+ value: 0.20319047619047617
400
+ name: Cosine Recall@3
401
+ - type: cosine_recall@5
402
+ value: 0.2276904761904762
403
+ name: Cosine Recall@5
404
+ - type: cosine_recall@10
405
+ value: 0.32354761904761903
406
+ name: Cosine Recall@10
407
+ - type: cosine_ndcg@10
408
+ value: 0.2271808224609275
409
+ name: Cosine Ndcg@10
410
+ - type: cosine_mrr@10
411
+ value: 0.23985714285714288
412
+ name: Cosine Mrr@10
413
+ - type: cosine_map@100
414
+ value: 0.18355553344945122
415
+ name: Cosine Map@100
416
+ - task:
417
+ type: information-retrieval
418
+ name: Information Retrieval
419
+ dataset:
420
+ name: NanoHotpotQA
421
+ type: NanoHotpotQA
422
+ metrics:
423
+ - type: cosine_accuracy@1
424
+ value: 0.32
425
+ name: Cosine Accuracy@1
426
+ - type: cosine_accuracy@3
427
+ value: 0.44
428
+ name: Cosine Accuracy@3
429
+ - type: cosine_accuracy@5
430
+ value: 0.48
431
+ name: Cosine Accuracy@5
432
+ - type: cosine_accuracy@10
433
+ value: 0.58
434
+ name: Cosine Accuracy@10
435
+ - type: cosine_precision@1
436
+ value: 0.32
437
+ name: Cosine Precision@1
438
+ - type: cosine_precision@3
439
+ value: 0.1733333333333333
440
+ name: Cosine Precision@3
441
+ - type: cosine_precision@5
442
+ value: 0.11600000000000002
443
+ name: Cosine Precision@5
444
+ - type: cosine_precision@10
445
+ value: 0.068
446
+ name: Cosine Precision@10
447
+ - type: cosine_recall@1
448
+ value: 0.16
449
+ name: Cosine Recall@1
450
+ - type: cosine_recall@3
451
+ value: 0.26
452
+ name: Cosine Recall@3
453
+ - type: cosine_recall@5
454
+ value: 0.29
455
+ name: Cosine Recall@5
456
+ - type: cosine_recall@10
457
+ value: 0.34
458
+ name: Cosine Recall@10
459
+ - type: cosine_ndcg@10
460
+ value: 0.30497689087635044
461
+ name: Cosine Ndcg@10
462
+ - type: cosine_mrr@10
463
+ value: 0.39905555555555544
464
+ name: Cosine Mrr@10
465
+ - type: cosine_map@100
466
+ value: 0.26301906759091515
467
+ name: Cosine Map@100
468
+ - task:
469
+ type: information-retrieval
470
+ name: Information Retrieval
471
+ dataset:
472
+ name: NanoMSMARCO
473
+ type: NanoMSMARCO
474
+ metrics:
475
+ - type: cosine_accuracy@1
476
+ value: 0.14
477
+ name: Cosine Accuracy@1
478
+ - type: cosine_accuracy@3
479
+ value: 0.28
480
+ name: Cosine Accuracy@3
481
+ - type: cosine_accuracy@5
482
+ value: 0.34
483
+ name: Cosine Accuracy@5
484
+ - type: cosine_accuracy@10
485
+ value: 0.44
486
+ name: Cosine Accuracy@10
487
+ - type: cosine_precision@1
488
+ value: 0.14
489
+ name: Cosine Precision@1
490
+ - type: cosine_precision@3
491
+ value: 0.09333333333333332
492
+ name: Cosine Precision@3
493
+ - type: cosine_precision@5
494
+ value: 0.068
495
+ name: Cosine Precision@5
496
+ - type: cosine_precision@10
497
+ value: 0.044000000000000004
498
+ name: Cosine Precision@10
499
+ - type: cosine_recall@1
500
+ value: 0.14
501
+ name: Cosine Recall@1
502
+ - type: cosine_recall@3
503
+ value: 0.28
504
+ name: Cosine Recall@3
505
+ - type: cosine_recall@5
506
+ value: 0.34
507
+ name: Cosine Recall@5
508
+ - type: cosine_recall@10
509
+ value: 0.44
510
+ name: Cosine Recall@10
511
+ - type: cosine_ndcg@10
512
+ value: 0.27595760463916813
513
+ name: Cosine Ndcg@10
514
+ - type: cosine_mrr@10
515
+ value: 0.22488095238095238
516
+ name: Cosine Mrr@10
517
+ - type: cosine_map@100
518
+ value: 0.24656541883369498
519
+ name: Cosine Map@100
520
+ - task:
521
+ type: information-retrieval
522
+ name: Information Retrieval
523
+ dataset:
524
+ name: NanoNFCorpus
525
+ type: NanoNFCorpus
526
+ metrics:
527
+ - type: cosine_accuracy@1
528
+ value: 0.22
529
+ name: Cosine Accuracy@1
530
+ - type: cosine_accuracy@3
531
+ value: 0.3
532
+ name: Cosine Accuracy@3
533
+ - type: cosine_accuracy@5
534
+ value: 0.34
535
+ name: Cosine Accuracy@5
536
+ - type: cosine_accuracy@10
537
+ value: 0.36
538
+ name: Cosine Accuracy@10
539
+ - type: cosine_precision@1
540
+ value: 0.22
541
+ name: Cosine Precision@1
542
+ - type: cosine_precision@3
543
+ value: 0.1533333333333333
544
+ name: Cosine Precision@3
545
+ - type: cosine_precision@5
546
+ value: 0.124
547
+ name: Cosine Precision@5
548
+ - type: cosine_precision@10
549
+ value: 0.096
550
+ name: Cosine Precision@10
551
+ - type: cosine_recall@1
552
+ value: 0.007116944515649617
553
+ name: Cosine Recall@1
554
+ - type: cosine_recall@3
555
+ value: 0.01288483574625764
556
+ name: Cosine Recall@3
557
+ - type: cosine_recall@5
558
+ value: 0.02025290517580909
559
+ name: Cosine Recall@5
560
+ - type: cosine_recall@10
561
+ value: 0.02555956272966021
562
+ name: Cosine Recall@10
563
+ - type: cosine_ndcg@10
564
+ value: 0.11695533319556885
565
+ name: Cosine Ndcg@10
566
+ - type: cosine_mrr@10
567
+ value: 0.2651904761904762
568
+ name: Cosine Mrr@10
569
+ - type: cosine_map@100
570
+ value: 0.030363746300173234
571
+ name: Cosine Map@100
572
+ - task:
573
+ type: information-retrieval
574
+ name: Information Retrieval
575
+ dataset:
576
+ name: NanoNQ
577
+ type: NanoNQ
578
+ metrics:
579
+ - type: cosine_accuracy@1
580
+ value: 0.14
581
+ name: Cosine Accuracy@1
582
+ - type: cosine_accuracy@3
583
+ value: 0.24
584
+ name: Cosine Accuracy@3
585
+ - type: cosine_accuracy@5
586
+ value: 0.32
587
+ name: Cosine Accuracy@5
588
+ - type: cosine_accuracy@10
589
+ value: 0.48
590
+ name: Cosine Accuracy@10
591
+ - type: cosine_precision@1
592
+ value: 0.14
593
+ name: Cosine Precision@1
594
+ - type: cosine_precision@3
595
+ value: 0.07999999999999999
596
+ name: Cosine Precision@3
597
+ - type: cosine_precision@5
598
+ value: 0.06400000000000002
599
+ name: Cosine Precision@5
600
+ - type: cosine_precision@10
601
+ value: 0.05
602
+ name: Cosine Precision@10
603
+ - type: cosine_recall@1
604
+ value: 0.13
605
+ name: Cosine Recall@1
606
+ - type: cosine_recall@3
607
+ value: 0.22
608
+ name: Cosine Recall@3
609
+ - type: cosine_recall@5
610
+ value: 0.29
611
+ name: Cosine Recall@5
612
+ - type: cosine_recall@10
613
+ value: 0.46
614
+ name: Cosine Recall@10
615
+ - type: cosine_ndcg@10
616
+ value: 0.2706566987839319
617
+ name: Cosine Ndcg@10
618
+ - type: cosine_mrr@10
619
+ value: 0.22174603174603175
620
+ name: Cosine Mrr@10
621
+ - type: cosine_map@100
622
+ value: 0.22631004639318789
623
+ name: Cosine Map@100
624
+ - task:
625
+ type: information-retrieval
626
+ name: Information Retrieval
627
+ dataset:
628
+ name: NanoQuoraRetrieval
629
+ type: NanoQuoraRetrieval
630
+ metrics:
631
+ - type: cosine_accuracy@1
632
+ value: 0.78
633
+ name: Cosine Accuracy@1
634
+ - type: cosine_accuracy@3
635
+ value: 0.88
636
+ name: Cosine Accuracy@3
637
+ - type: cosine_accuracy@5
638
+ value: 0.9
639
+ name: Cosine Accuracy@5
640
+ - type: cosine_accuracy@10
641
+ value: 0.94
642
+ name: Cosine Accuracy@10
643
+ - type: cosine_precision@1
644
+ value: 0.78
645
+ name: Cosine Precision@1
646
+ - type: cosine_precision@3
647
+ value: 0.35999999999999993
648
+ name: Cosine Precision@3
649
+ - type: cosine_precision@5
650
+ value: 0.23999999999999994
651
+ name: Cosine Precision@5
652
+ - type: cosine_precision@10
653
+ value: 0.13199999999999998
654
+ name: Cosine Precision@10
655
+ - type: cosine_recall@1
656
+ value: 0.6806666666666666
657
+ name: Cosine Recall@1
658
+ - type: cosine_recall@3
659
+ value: 0.8346666666666667
660
+ name: Cosine Recall@3
661
+ - type: cosine_recall@5
662
+ value: 0.8793333333333334
663
+ name: Cosine Recall@5
664
+ - type: cosine_recall@10
665
+ value: 0.9366666666666665
666
+ name: Cosine Recall@10
667
+ - type: cosine_ndcg@10
668
+ value: 0.8528887039265185
669
+ name: Cosine Ndcg@10
670
+ - type: cosine_mrr@10
671
+ value: 0.8324126984126984
672
+ name: Cosine Mrr@10
673
+ - type: cosine_map@100
674
+ value: 0.820234632034632
675
+ name: Cosine Map@100
676
+ - task:
677
+ type: information-retrieval
678
+ name: Information Retrieval
679
+ dataset:
680
+ name: NanoSCIDOCS
681
+ type: NanoSCIDOCS
682
+ metrics:
683
+ - type: cosine_accuracy@1
684
+ value: 0.28
685
+ name: Cosine Accuracy@1
686
+ - type: cosine_accuracy@3
687
+ value: 0.42
688
+ name: Cosine Accuracy@3
689
+ - type: cosine_accuracy@5
690
+ value: 0.52
691
+ name: Cosine Accuracy@5
692
+ - type: cosine_accuracy@10
693
+ value: 0.62
694
+ name: Cosine Accuracy@10
695
+ - type: cosine_precision@1
696
+ value: 0.28
697
+ name: Cosine Precision@1
698
+ - type: cosine_precision@3
699
+ value: 0.22666666666666668
700
+ name: Cosine Precision@3
701
+ - type: cosine_precision@5
702
+ value: 0.2
703
+ name: Cosine Precision@5
704
+ - type: cosine_precision@10
705
+ value: 0.12399999999999999
706
+ name: Cosine Precision@10
707
+ - type: cosine_recall@1
708
+ value: 0.05866666666666667
709
+ name: Cosine Recall@1
710
+ - type: cosine_recall@3
711
+ value: 0.14066666666666666
712
+ name: Cosine Recall@3
713
+ - type: cosine_recall@5
714
+ value: 0.20566666666666666
715
+ name: Cosine Recall@5
716
+ - type: cosine_recall@10
717
+ value: 0.25566666666666665
718
+ name: Cosine Recall@10
719
+ - type: cosine_ndcg@10
720
+ value: 0.24909911706779386
721
+ name: Cosine Ndcg@10
722
+ - type: cosine_mrr@10
723
+ value: 0.38332539682539685
724
+ name: Cosine Mrr@10
725
+ - type: cosine_map@100
726
+ value: 0.20162687946594338
727
+ name: Cosine Map@100
728
+ - task:
729
+ type: information-retrieval
730
+ name: Information Retrieval
731
+ dataset:
732
+ name: NanoArguAna
733
+ type: NanoArguAna
734
+ metrics:
735
+ - type: cosine_accuracy@1
736
+ value: 0.18
737
+ name: Cosine Accuracy@1
738
+ - type: cosine_accuracy@3
739
+ value: 0.52
740
+ name: Cosine Accuracy@3
741
+ - type: cosine_accuracy@5
742
+ value: 0.64
743
+ name: Cosine Accuracy@5
744
+ - type: cosine_accuracy@10
745
+ value: 0.88
746
+ name: Cosine Accuracy@10
747
+ - type: cosine_precision@1
748
+ value: 0.18
749
+ name: Cosine Precision@1
750
+ - type: cosine_precision@3
751
+ value: 0.17333333333333337
752
+ name: Cosine Precision@3
753
+ - type: cosine_precision@5
754
+ value: 0.128
755
+ name: Cosine Precision@5
756
+ - type: cosine_precision@10
757
+ value: 0.088
758
+ name: Cosine Precision@10
759
+ - type: cosine_recall@1
760
+ value: 0.18
761
+ name: Cosine Recall@1
762
+ - type: cosine_recall@3
763
+ value: 0.52
764
+ name: Cosine Recall@3
765
+ - type: cosine_recall@5
766
+ value: 0.64
767
+ name: Cosine Recall@5
768
+ - type: cosine_recall@10
769
+ value: 0.88
770
+ name: Cosine Recall@10
771
+ - type: cosine_ndcg@10
772
+ value: 0.5102396499498778
773
+ name: Cosine Ndcg@10
774
+ - type: cosine_mrr@10
775
+ value: 0.3946269841269841
776
+ name: Cosine Mrr@10
777
+ - type: cosine_map@100
778
+ value: 0.4001733643377607
779
+ name: Cosine Map@100
780
+ - task:
781
+ type: information-retrieval
782
+ name: Information Retrieval
783
+ dataset:
784
+ name: NanoSciFact
785
+ type: NanoSciFact
786
+ metrics:
787
+ - type: cosine_accuracy@1
788
+ value: 0.3
789
+ name: Cosine Accuracy@1
790
+ - type: cosine_accuracy@3
791
+ value: 0.34
792
+ name: Cosine Accuracy@3
793
+ - type: cosine_accuracy@5
794
+ value: 0.42
795
+ name: Cosine Accuracy@5
796
+ - type: cosine_accuracy@10
797
+ value: 0.5
798
+ name: Cosine Accuracy@10
799
+ - type: cosine_precision@1
800
+ value: 0.3
801
+ name: Cosine Precision@1
802
+ - type: cosine_precision@3
803
+ value: 0.11999999999999998
804
+ name: Cosine Precision@3
805
+ - type: cosine_precision@5
806
+ value: 0.09200000000000001
807
+ name: Cosine Precision@5
808
+ - type: cosine_precision@10
809
+ value: 0.055999999999999994
810
+ name: Cosine Precision@10
811
+ - type: cosine_recall@1
812
+ value: 0.265
813
+ name: Cosine Recall@1
814
+ - type: cosine_recall@3
815
+ value: 0.315
816
+ name: Cosine Recall@3
817
+ - type: cosine_recall@5
818
+ value: 0.4
819
+ name: Cosine Recall@5
820
+ - type: cosine_recall@10
821
+ value: 0.485
822
+ name: Cosine Recall@10
823
+ - type: cosine_ndcg@10
824
+ value: 0.3688721552089384
825
+ name: Cosine Ndcg@10
826
+ - type: cosine_mrr@10
827
+ value: 0.3476666666666667
828
+ name: Cosine Mrr@10
829
+ - type: cosine_map@100
830
+ value: 0.34115921547380024
831
+ name: Cosine Map@100
832
+ - task:
833
+ type: information-retrieval
834
+ name: Information Retrieval
835
+ dataset:
836
+ name: NanoTouche2020
837
+ type: NanoTouche2020
838
+ metrics:
839
+ - type: cosine_accuracy@1
840
+ value: 0.4897959183673469
841
+ name: Cosine Accuracy@1
842
+ - type: cosine_accuracy@3
843
+ value: 0.7346938775510204
844
+ name: Cosine Accuracy@3
845
+ - type: cosine_accuracy@5
846
+ value: 0.8163265306122449
847
+ name: Cosine Accuracy@5
848
+ - type: cosine_accuracy@10
849
+ value: 0.9387755102040817
850
+ name: Cosine Accuracy@10
851
+ - type: cosine_precision@1
852
+ value: 0.4897959183673469
853
+ name: Cosine Precision@1
854
+ - type: cosine_precision@3
855
+ value: 0.4013605442176871
856
+ name: Cosine Precision@3
857
+ - type: cosine_precision@5
858
+ value: 0.3673469387755102
859
+ name: Cosine Precision@5
860
+ - type: cosine_precision@10
861
+ value: 0.3102040816326531
862
+ name: Cosine Precision@10
863
+ - type: cosine_recall@1
864
+ value: 0.036516156386696134
865
+ name: Cosine Recall@1
866
+ - type: cosine_recall@3
867
+ value: 0.08582342270510718
868
+ name: Cosine Recall@3
869
+ - type: cosine_recall@5
870
+ value: 0.12560656255524566
871
+ name: Cosine Recall@5
872
+ - type: cosine_recall@10
873
+ value: 0.2064747763464094
874
+ name: Cosine Recall@10
875
+ - type: cosine_ndcg@10
876
+ value: 0.3575303928348819
877
+ name: Cosine Ndcg@10
878
+ - type: cosine_mrr@10
879
+ value: 0.6281098153547133
880
+ name: Cosine Mrr@10
881
+ - type: cosine_map@100
882
+ value: 0.27828847509729454
883
+ name: Cosine Map@100
884
+ - task:
885
+ type: nano-beir
886
+ name: Nano BEIR
887
+ dataset:
888
+ name: NanoBEIR mean
889
+ type: NanoBEIR_mean
890
+ metrics:
891
+ - type: cosine_accuracy@1
892
+ value: 0.30383045525902674
893
+ name: Cosine Accuracy@1
894
+ - type: cosine_accuracy@3
895
+ value: 0.45651491365777075
896
+ name: Cosine Accuracy@3
897
+ - type: cosine_accuracy@5
898
+ value: 0.5320251177394035
899
+ name: Cosine Accuracy@5
900
+ - type: cosine_accuracy@10
901
+ value: 0.6337519623233908
902
+ name: Cosine Accuracy@10
903
+ - type: cosine_precision@1
904
+ value: 0.30383045525902674
905
+ name: Cosine Precision@1
906
+ - type: cosine_precision@3
907
+ value: 0.19702773417059127
908
+ name: Cosine Precision@3
909
+ - type: cosine_precision@5
910
+ value: 0.16148822605965465
911
+ name: Cosine Precision@5
912
+ - type: cosine_precision@10
913
+ value: 0.11586185243328104
914
+ name: Cosine Precision@10
915
+ - type: cosine_recall@1
916
+ value: 0.16161314762466306
917
+ name: Cosine Recall@1
918
+ - type: cosine_recall@3
919
+ value: 0.2718424675131352
920
+ name: Cosine Recall@3
921
+ - type: cosine_recall@5
922
+ value: 0.32990925813152305
923
+ name: Cosine Recall@5
924
+ - type: cosine_recall@10
925
+ value: 0.42046541100531104
926
+ name: Cosine Recall@10
927
+ - type: cosine_ndcg@10
928
+ value: 0.35163734221667803
929
+ name: Cosine Ndcg@10
930
+ - type: cosine_mrr@10
931
+ value: 0.4015920859186165
932
+ name: Cosine Mrr@10
933
+ - type: cosine_map@100
934
+ value: 0.2922755153738202
935
+ name: Cosine Map@100
936
+ ---
937
+
938
+ # MPNet base trained on Natural Questions pairs
939
+
940
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
941
+
942
+ ## Model Details
943
+
944
+ ### Model Description
945
+ - **Model Type:** Sentence Transformer
946
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
947
+ - **Maximum Sequence Length:** 512 tokens
948
+ - **Output Dimensionality:** 768 dimensions
949
+ - **Similarity Function:** Cosine Similarity
950
+ - **Training Dataset:**
951
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
952
+ - **Language:** en
953
+ - **License:** apache-2.0
954
+
955
+ ### Model Sources
956
+
957
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
958
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
959
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
960
+
961
+ ### Full Model Architecture
962
+
963
+ ```
964
+ SentenceTransformer(
965
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
966
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
967
+ )
968
+ ```
969
+
970
+ ## Usage
971
+
972
+ ### Direct Usage (Sentence Transformers)
973
+
974
+ First install the Sentence Transformers library:
975
+
976
+ ```bash
977
+ pip install -U sentence-transformers
978
+ ```
979
+
980
+ Then you can load this model and run inference.
981
+ ```python
982
+ from sentence_transformers import SentenceTransformer
983
+
984
+ # Download from the 🤗 Hub
985
+ model = SentenceTransformer("tomaarsen/mpnet-base-nq-cgist-2-gte")
986
+ # Run inference
987
+ sentences = [
988
+ 'where does the last name francisco come from',
989
+ 'Francisco Francisco is the Spanish and Portuguese form of the masculine given name Franciscus (corresponding to English Francis).',
990
+ 'Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia and thwarts a genocide of her people. The story forms the core of the Jewish festival of Purim, during which it is read aloud twice: once in the evening and again the following morning. The books of Esther and Song of Songs are the only books in the Hebrew Bible that do not explicitly mention God.[2]',
991
+ ]
992
+ embeddings = model.encode(sentences)
993
+ print(embeddings.shape)
994
+ # [3, 768]
995
+
996
+ # Get the similarity scores for the embeddings
997
+ similarities = model.similarity(embeddings, embeddings)
998
+ print(similarities.shape)
999
+ # [3, 3]
1000
+ ```
1001
+
1002
+ <!--
1003
+ ### Direct Usage (Transformers)
1004
+
1005
+ <details><summary>Click to see the direct usage in Transformers</summary>
1006
+
1007
+ </details>
1008
+ -->
1009
+
1010
+ <!--
1011
+ ### Downstream Usage (Sentence Transformers)
1012
+
1013
+ You can finetune this model on your own dataset.
1014
+
1015
+ <details><summary>Click to expand</summary>
1016
+
1017
+ </details>
1018
+ -->
1019
+
1020
+ <!--
1021
+ ### Out-of-Scope Use
1022
+
1023
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
1024
+ -->
1025
+
1026
+ ## Evaluation
1027
+
1028
+ ### Metrics
1029
+
1030
+ #### Information Retrieval
1031
+
1032
+ * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
1033
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1034
+
1035
+ | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
1036
+ |:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
1037
+ | cosine_accuracy@1 | 0.16 | 0.52 | 0.28 | 0.14 | 0.32 | 0.14 | 0.22 | 0.14 | 0.78 | 0.28 | 0.18 | 0.3 | 0.4898 |
1038
+ | cosine_accuracy@3 | 0.34 | 0.62 | 0.5 | 0.32 | 0.44 | 0.28 | 0.3 | 0.24 | 0.88 | 0.42 | 0.52 | 0.34 | 0.7347 |
1039
+ | cosine_accuracy@5 | 0.56 | 0.7 | 0.52 | 0.36 | 0.48 | 0.34 | 0.34 | 0.32 | 0.9 | 0.52 | 0.64 | 0.42 | 0.8163 |
1040
+ | cosine_accuracy@10 | 0.64 | 0.78 | 0.62 | 0.46 | 0.58 | 0.44 | 0.36 | 0.48 | 0.94 | 0.62 | 0.88 | 0.5 | 0.9388 |
1041
+ | cosine_precision@1 | 0.16 | 0.52 | 0.28 | 0.14 | 0.32 | 0.14 | 0.22 | 0.14 | 0.78 | 0.28 | 0.18 | 0.3 | 0.4898 |
1042
+ | cosine_precision@3 | 0.12 | 0.36 | 0.1667 | 0.1333 | 0.1733 | 0.0933 | 0.1533 | 0.08 | 0.36 | 0.2267 | 0.1733 | 0.12 | 0.4014 |
1043
+ | cosine_precision@5 | 0.128 | 0.364 | 0.108 | 0.1 | 0.116 | 0.068 | 0.124 | 0.064 | 0.24 | 0.2 | 0.128 | 0.092 | 0.3673 |
1044
+ | cosine_precision@10 | 0.082 | 0.322 | 0.064 | 0.07 | 0.068 | 0.044 | 0.096 | 0.05 | 0.132 | 0.124 | 0.088 | 0.056 | 0.3102 |
1045
+ | cosine_recall@1 | 0.06 | 0.0337 | 0.28 | 0.0693 | 0.16 | 0.14 | 0.0071 | 0.13 | 0.6807 | 0.0587 | 0.18 | 0.265 | 0.0365 |
1046
+ | cosine_recall@3 | 0.1217 | 0.0601 | 0.48 | 0.2032 | 0.26 | 0.28 | 0.0129 | 0.22 | 0.8347 | 0.1407 | 0.52 | 0.315 | 0.0858 |
1047
+ | cosine_recall@5 | 0.2483 | 0.1119 | 0.51 | 0.2277 | 0.29 | 0.34 | 0.0203 | 0.29 | 0.8793 | 0.2057 | 0.64 | 0.4 | 0.1256 |
1048
+ | cosine_recall@10 | 0.3157 | 0.1975 | 0.6 | 0.3235 | 0.34 | 0.44 | 0.0256 | 0.46 | 0.9367 | 0.2557 | 0.88 | 0.485 | 0.2065 |
1049
+ | **cosine_ndcg@10** | **0.228** | **0.373** | **0.4359** | **0.2272** | **0.305** | **0.276** | **0.117** | **0.2707** | **0.8529** | **0.2491** | **0.5102** | **0.3689** | **0.3575** |
1050
+ | cosine_mrr@10 | 0.3094 | 0.5887 | 0.3857 | 0.2399 | 0.3991 | 0.2249 | 0.2652 | 0.2217 | 0.8324 | 0.3833 | 0.3946 | 0.3477 | 0.6281 |
1051
+ | cosine_map@100 | 0.1655 | 0.2525 | 0.3903 | 0.1836 | 0.263 | 0.2466 | 0.0304 | 0.2263 | 0.8202 | 0.2016 | 0.4002 | 0.3412 | 0.2783 |
1052
+
1053
+ #### Nano BEIR
1054
+
1055
+ * Dataset: `NanoBEIR_mean`
1056
+ * Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
1057
+
1058
+ | Metric | Value |
1059
+ |:--------------------|:-----------|
1060
+ | cosine_accuracy@1 | 0.3038 |
1061
+ | cosine_accuracy@3 | 0.4565 |
1062
+ | cosine_accuracy@5 | 0.532 |
1063
+ | cosine_accuracy@10 | 0.6338 |
1064
+ | cosine_precision@1 | 0.3038 |
1065
+ | cosine_precision@3 | 0.197 |
1066
+ | cosine_precision@5 | 0.1615 |
1067
+ | cosine_precision@10 | 0.1159 |
1068
+ | cosine_recall@1 | 0.1616 |
1069
+ | cosine_recall@3 | 0.2718 |
1070
+ | cosine_recall@5 | 0.3299 |
1071
+ | cosine_recall@10 | 0.4205 |
1072
+ | **cosine_ndcg@10** | **0.3516** |
1073
+ | cosine_mrr@10 | 0.4016 |
1074
+ | cosine_map@100 | 0.2923 |
1075
+
1076
+ <!--
1077
+ ## Bias, Risks and Limitations
1078
+
1079
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1080
+ -->
1081
+
1082
+ <!--
1083
+ ### Recommendations
1084
+
1085
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1086
+ -->
1087
+
1088
+ ## Training Details
1089
+
1090
+ ### Training Dataset
1091
+
1092
+ #### natural-questions
1093
+
1094
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1095
+ * Size: 50,000 training samples
1096
+ * Columns: <code>query</code> and <code>answer</code>
1097
+ * Approximate statistics based on the first 1000 samples:
1098
+ | | query | answer |
1099
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
1100
+ | type | string | string |
1101
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.74 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 137.2 tokens</li><li>max: 508 tokens</li></ul> |
1102
+ * Samples:
1103
+ | query | answer |
1104
+ |:------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1105
+ | <code>who is required to report according to the hmda</code> | <code>Home Mortgage Disclosure Act US financial institutions must report HMDA data to their regulator if they meet certain criteria, such as having assets above a specific threshold. The criteria is different for depository and non-depository institutions and are available on the FFIEC website.[4] In 2012, there were 7,400 institutions that reported a total of 18.7 million HMDA records.[5]</code> |
1106
+ | <code>what is the definition of endoplasmic reticulum in biology</code> | <code>Endoplasmic reticulum The endoplasmic reticulum (ER) is a type of organelle in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most types of eukaryotic cells, but is absent from red blood cells and spermatozoa. There are two types of endoplasmic reticulum: rough and smooth. The outer (cytosolic) face of the rough endoplasmic reticulum is studded with ribosomes that are the sites of protein synthesis. The rough endoplasmic reticulum is especially prominent in cells such as hepatocytes. The smooth endoplasmic reticulum lacks ribosomes and functions in lipid manufacture and metabolism, the production of steroid hormones, and detoxification.[1] The smooth ER is especially abundant in mammalian liver and gonad cells. The lacy membranes of the endoplasmic reticulum were first seen in 1945 using elect...</code> |
1107
+ | <code>what does the ski mean in polish names</code> | <code>Polish name Since the High Middle Ages, Polish-sounding surnames ending with the masculine -ski suffix, including -cki and -dzki, and the corresponding feminine suffix -ska/-cka/-dzka were associated with the nobility (Polish szlachta), which alone, in the early years, had such suffix distinctions.[1] They are widely popular today.</code> |
1108
+ * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
1109
+ ```json
1110
+ {'guide': SentenceTransformer(
1111
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
1112
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1113
+ (2): Normalize()
1114
+ ), 'temperature': 0.01}
1115
+ ```
1116
+
1117
+ ### Evaluation Dataset
1118
+
1119
+ #### natural-questions
1120
+
1121
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1122
+ * Size: 100,231 evaluation samples
1123
+ * Columns: <code>query</code> and <code>answer</code>
1124
+ * Approximate statistics based on the first 1000 samples:
1125
+ | | query | answer |
1126
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
1127
+ | type | string | string |
1128
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.78 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 135.64 tokens</li><li>max: 512 tokens</li></ul> |
1129
+ * Samples:
1130
+ | query | answer |
1131
+ |:------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1132
+ | <code>difference between russian blue and british blue cat</code> | <code>Russian Blue The coat is known as a "double coat", with the undercoat being soft, downy and equal in length to the guard hairs, which are an even blue with silver tips. However, the tail may have a few very dull, almost unnoticeable stripes. The coat is described as thick, plush and soft to the touch. The feeling is softer than the softest silk. The silver tips give the coat a shimmering appearance. Its eyes are almost always a dark and vivid green. Any white patches of fur or yellow eyes in adulthood are seen as flaws in show cats.[3] Russian Blues should not be confused with British Blues (which are not a distinct breed, but rather a British Shorthair with a blue coat as the British Shorthair breed itself comes in a wide variety of colors and patterns), nor the Chartreux or Korat which are two other naturally occurring breeds of blue cats, although they have similar traits.</code> |
1133
+ | <code>who played the little girl on mrs doubtfire</code> | <code>Mara Wilson Mara Elizabeth Wilson[2] (born July 24, 1987) is an American writer and former child actress. She is known for playing Natalie Hillard in Mrs. Doubtfire (1993), Susan Walker in Miracle on 34th Street (1994), Matilda Wormwood in Matilda (1996) and Lily Stone in Thomas and the Magic Railroad (2000). Since retiring from film acting, Wilson has focused on writing.</code> |
1134
+ | <code>what year did the movie the sound of music come out</code> | <code>The Sound of Music (film) The film was released on March 2, 1965 in the United States, initially as a limited roadshow theatrical release. Although critical response to the film was widely mixed, the film was a major commercial success, becoming the number one box office movie after four weeks, and the highest-grossing film of 1965. By November 1966, The Sound of Music had become the highest-grossing film of all-time—surpassing Gone with the Wind—and held that distinction for five years. The film was just as popular throughout the world, breaking previous box-office records in twenty-nine countries. Following an initial theatrical release that lasted four and a half years, and two successful re-releases, the film sold 283 million admissions worldwide and earned a total worldwide gross of $286,000,000.</code> |
1135
+ * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
1136
+ ```json
1137
+ {'guide': SentenceTransformer(
1138
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
1139
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1140
+ (2): Normalize()
1141
+ ), 'temperature': 0.01}
1142
+ ```
1143
+
1144
+ ### Training Hyperparameters
1145
+ #### Non-Default Hyperparameters
1146
+
1147
+ - `eval_strategy`: steps
1148
+ - `per_device_train_batch_size`: 2048
1149
+ - `per_device_eval_batch_size`: 2048
1150
+ - `learning_rate`: 2e-05
1151
+ - `num_train_epochs`: 1
1152
+ - `warmup_ratio`: 0.1
1153
+ - `seed`: 12
1154
+ - `bf16`: True
1155
+
1156
+ #### All Hyperparameters
1157
+ <details><summary>Click to expand</summary>
1158
+
1159
+ - `overwrite_output_dir`: False
1160
+ - `do_predict`: False
1161
+ - `eval_strategy`: steps
1162
+ - `prediction_loss_only`: True
1163
+ - `per_device_train_batch_size`: 2048
1164
+ - `per_device_eval_batch_size`: 2048
1165
+ - `per_gpu_train_batch_size`: None
1166
+ - `per_gpu_eval_batch_size`: None
1167
+ - `gradient_accumulation_steps`: 1
1168
+ - `eval_accumulation_steps`: None
1169
+ - `torch_empty_cache_steps`: None
1170
+ - `learning_rate`: 2e-05
1171
+ - `weight_decay`: 0.0
1172
+ - `adam_beta1`: 0.9
1173
+ - `adam_beta2`: 0.999
1174
+ - `adam_epsilon`: 1e-08
1175
+ - `max_grad_norm`: 1.0
1176
+ - `num_train_epochs`: 1
1177
+ - `max_steps`: -1
1178
+ - `lr_scheduler_type`: linear
1179
+ - `lr_scheduler_kwargs`: {}
1180
+ - `warmup_ratio`: 0.1
1181
+ - `warmup_steps`: 0
1182
+ - `log_level`: passive
1183
+ - `log_level_replica`: warning
1184
+ - `log_on_each_node`: True
1185
+ - `logging_nan_inf_filter`: True
1186
+ - `save_safetensors`: True
1187
+ - `save_on_each_node`: False
1188
+ - `save_only_model`: False
1189
+ - `restore_callback_states_from_checkpoint`: False
1190
+ - `no_cuda`: False
1191
+ - `use_cpu`: False
1192
+ - `use_mps_device`: False
1193
+ - `seed`: 12
1194
+ - `data_seed`: None
1195
+ - `jit_mode_eval`: False
1196
+ - `use_ipex`: False
1197
+ - `bf16`: True
1198
+ - `fp16`: False
1199
+ - `fp16_opt_level`: O1
1200
+ - `half_precision_backend`: auto
1201
+ - `bf16_full_eval`: False
1202
+ - `fp16_full_eval`: False
1203
+ - `tf32`: None
1204
+ - `local_rank`: 0
1205
+ - `ddp_backend`: None
1206
+ - `tpu_num_cores`: None
1207
+ - `tpu_metrics_debug`: False
1208
+ - `debug`: []
1209
+ - `dataloader_drop_last`: False
1210
+ - `dataloader_num_workers`: 0
1211
+ - `dataloader_prefetch_factor`: None
1212
+ - `past_index`: -1
1213
+ - `disable_tqdm`: False
1214
+ - `remove_unused_columns`: True
1215
+ - `label_names`: None
1216
+ - `load_best_model_at_end`: False
1217
+ - `ignore_data_skip`: False
1218
+ - `fsdp`: []
1219
+ - `fsdp_min_num_params`: 0
1220
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1221
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1222
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1223
+ - `deepspeed`: None
1224
+ - `label_smoothing_factor`: 0.0
1225
+ - `optim`: adamw_torch
1226
+ - `optim_args`: None
1227
+ - `adafactor`: False
1228
+ - `group_by_length`: False
1229
+ - `length_column_name`: length
1230
+ - `ddp_find_unused_parameters`: None
1231
+ - `ddp_bucket_cap_mb`: None
1232
+ - `ddp_broadcast_buffers`: False
1233
+ - `dataloader_pin_memory`: True
1234
+ - `dataloader_persistent_workers`: False
1235
+ - `skip_memory_metrics`: True
1236
+ - `use_legacy_prediction_loop`: False
1237
+ - `push_to_hub`: False
1238
+ - `resume_from_checkpoint`: None
1239
+ - `hub_model_id`: None
1240
+ - `hub_strategy`: every_save
1241
+ - `hub_private_repo`: False
1242
+ - `hub_always_push`: False
1243
+ - `gradient_checkpointing`: False
1244
+ - `gradient_checkpointing_kwargs`: None
1245
+ - `include_inputs_for_metrics`: False
1246
+ - `include_for_metrics`: []
1247
+ - `eval_do_concat_batches`: True
1248
+ - `fp16_backend`: auto
1249
+ - `push_to_hub_model_id`: None
1250
+ - `push_to_hub_organization`: None
1251
+ - `mp_parameters`:
1252
+ - `auto_find_batch_size`: False
1253
+ - `full_determinism`: False
1254
+ - `torchdynamo`: None
1255
+ - `ray_scope`: last
1256
+ - `ddp_timeout`: 1800
1257
+ - `torch_compile`: False
1258
+ - `torch_compile_backend`: None
1259
+ - `torch_compile_mode`: None
1260
+ - `dispatch_batches`: None
1261
+ - `split_batches`: None
1262
+ - `include_tokens_per_second`: False
1263
+ - `include_num_input_tokens_seen`: False
1264
+ - `neftune_noise_alpha`: None
1265
+ - `optim_target_modules`: None
1266
+ - `batch_eval_metrics`: False
1267
+ - `eval_on_start`: False
1268
+ - `use_liger_kernel`: False
1269
+ - `eval_use_gather_object`: False
1270
+ - `average_tokens_across_devices`: False
1271
+ - `prompts`: None
1272
+ - `batch_sampler`: batch_sampler
1273
+ - `multi_dataset_batch_sampler`: proportional
1274
+
1275
+ </details>
1276
+
1277
+ ### Training Logs
1278
+ | Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
1279
+ |:-----:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
1280
+ | 0.04 | 1 | 15.537 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1281
+ | 0.2 | 5 | 11.6576 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1282
+ | 0.4 | 10 | 7.1392 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1283
+ | 0.6 | 15 | 5.0005 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1284
+ | 0.8 | 20 | 4.0541 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1285
+ | 1.0 | 25 | 3.4117 | 2.3797 | 0.2280 | 0.3730 | 0.4359 | 0.2272 | 0.3050 | 0.2760 | 0.1170 | 0.2707 | 0.8529 | 0.2491 | 0.5102 | 0.3689 | 0.3575 | 0.3516 |
1286
+
1287
+
1288
+ ### Environmental Impact
1289
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
1290
+ - **Energy Consumed**: 0.153 kWh
1291
+ - **Carbon Emitted**: 0.059 kg of CO2
1292
+ - **Hours Used**: 0.396 hours
1293
+
1294
+ ### Training Hardware
1295
+ - **On Cloud**: No
1296
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
1297
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
1298
+ - **RAM Size**: 31.78 GB
1299
+
1300
+ ### Framework Versions
1301
+ - Python: 3.11.6
1302
+ - Sentence Transformers: 3.4.0.dev0
1303
+ - Transformers: 4.46.2
1304
+ - PyTorch: 2.5.0+cu121
1305
+ - Accelerate: 0.35.0.dev0
1306
+ - Datasets: 2.20.0
1307
+ - Tokenizers: 0.20.3
1308
+
1309
+ ## Citation
1310
+
1311
+ ### BibTeX
1312
+
1313
+ #### Sentence Transformers
1314
+ ```bibtex
1315
+ @inproceedings{reimers-2019-sentence-bert,
1316
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1317
+ author = "Reimers, Nils and Gurevych, Iryna",
1318
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1319
+ month = "11",
1320
+ year = "2019",
1321
+ publisher = "Association for Computational Linguistics",
1322
+ url = "https://arxiv.org/abs/1908.10084",
1323
+ }
1324
+ ```
1325
+
1326
+ <!--
1327
+ ## Glossary
1328
+
1329
+ *Clearly define terms in order to be accessible across audiences.*
1330
+ -->
1331
+
1332
+ <!--
1333
+ ## Model Card Authors
1334
+
1335
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1336
+ -->
1337
+
1338
+ <!--
1339
+ ## Model Card Contact
1340
+
1341
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1342
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0.dev0",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37d302f1c39092d612b0629c34037240c11d41f019063eb367739e83e1435160
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff