Add new SentenceTransformer model.
Browse files- README.md +126 -0
- config.json +26 -0
- config_sentence_transformers.json +39 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- ar
|
5 |
+
- bg
|
6 |
+
- ca
|
7 |
+
- cs
|
8 |
+
- da
|
9 |
+
- de
|
10 |
+
- el
|
11 |
+
- en
|
12 |
+
- es
|
13 |
+
- et
|
14 |
+
- fa
|
15 |
+
- fi
|
16 |
+
- fr
|
17 |
+
- gl
|
18 |
+
- gu
|
19 |
+
- he
|
20 |
+
- hi
|
21 |
+
- hr
|
22 |
+
- hu
|
23 |
+
- hy
|
24 |
+
- id
|
25 |
+
- it
|
26 |
+
- ja
|
27 |
+
- ka
|
28 |
+
- ko
|
29 |
+
- ku
|
30 |
+
- lt
|
31 |
+
- lv
|
32 |
+
- mk
|
33 |
+
- mn
|
34 |
+
- mr
|
35 |
+
- ms
|
36 |
+
- my
|
37 |
+
- nb
|
38 |
+
- nl
|
39 |
+
- pl
|
40 |
+
- pt
|
41 |
+
- ro
|
42 |
+
- ru
|
43 |
+
- sk
|
44 |
+
- sl
|
45 |
+
- sq
|
46 |
+
- sr
|
47 |
+
- sv
|
48 |
+
- th
|
49 |
+
- tr
|
50 |
+
- uk
|
51 |
+
- ur
|
52 |
+
- vi
|
53 |
+
language_bcp47:
|
54 |
+
- fr-ca
|
55 |
+
- pt-br
|
56 |
+
- zh-cn
|
57 |
+
- zh-tw
|
58 |
+
pipeline_tag: sentence-similarity
|
59 |
+
license: apache-2.0
|
60 |
+
tags:
|
61 |
+
- sentence-transformers
|
62 |
+
- feature-extraction
|
63 |
+
- sentence-similarity
|
64 |
+
- transformers
|
65 |
+
---
|
66 |
+
|
67 |
+
# sentence-transformers/distiluse-base-multilingual-cased-v2
|
68 |
+
|
69 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
## Usage (Sentence-Transformers)
|
74 |
+
|
75 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
76 |
+
|
77 |
+
```
|
78 |
+
pip install -U sentence-transformers
|
79 |
+
```
|
80 |
+
|
81 |
+
Then you can use the model like this:
|
82 |
+
|
83 |
+
```python
|
84 |
+
from sentence_transformers import SentenceTransformer
|
85 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
86 |
+
|
87 |
+
model = SentenceTransformer('sentence-transformers/distiluse-base-multilingual-cased-v2')
|
88 |
+
embeddings = model.encode(sentences)
|
89 |
+
print(embeddings)
|
90 |
+
```
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
## Evaluation Results
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distiluse-base-multilingual-cased-v2)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
## Full Model Architecture
|
103 |
+
```
|
104 |
+
SentenceTransformer(
|
105 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
106 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
107 |
+
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
108 |
+
)
|
109 |
+
```
|
110 |
+
|
111 |
+
## Citing & Authors
|
112 |
+
|
113 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
114 |
+
|
115 |
+
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
116 |
+
```bibtex
|
117 |
+
@inproceedings{reimers-2019-sentence-bert,
|
118 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
119 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
120 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
121 |
+
month = "11",
|
122 |
+
year = "2019",
|
123 |
+
publisher = "Association for Computational Linguistics",
|
124 |
+
url = "http://arxiv.org/abs/1908.10084",
|
125 |
+
}
|
126 |
+
```
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/distiluse-base-multilingual-cased-v2",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_hidden_states": true,
|
17 |
+
"output_past": true,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"qa_dropout": 0.1,
|
20 |
+
"seq_classif_dropout": 0.2,
|
21 |
+
"sinusoidal_pos_embds": false,
|
22 |
+
"tie_weights_": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.36.2",
|
25 |
+
"vocab_size": 119547
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"pytorch": "2.1.0+cu121",
|
4 |
+
"sentence_transformers": "2.2.2",
|
5 |
+
"transformers": "4.36.2"
|
6 |
+
},
|
7 |
+
"model_type": "sentence-transformer",
|
8 |
+
"modules": [
|
9 |
+
{
|
10 |
+
"config": {
|
11 |
+
"do_lower_case": false,
|
12 |
+
"max_seq_length": 128
|
13 |
+
},
|
14 |
+
"type": "sentence_transformers.models.Transformer"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"config": {
|
18 |
+
"pooling_mode_cls_token": false,
|
19 |
+
"pooling_mode_lasttoken": false,
|
20 |
+
"pooling_mode_max_tokens": false,
|
21 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
22 |
+
"pooling_mode_mean_tokens": true,
|
23 |
+
"pooling_mode_weightedmean_tokens": false,
|
24 |
+
"word_embedding_dimension": 768
|
25 |
+
},
|
26 |
+
"type": "sentence_transformers.models.Pooling"
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"config": {
|
30 |
+
"activation_function": "torch.nn.modules.activation.Tanh",
|
31 |
+
"bias": true,
|
32 |
+
"in_features": 768,
|
33 |
+
"out_features": 512
|
34 |
+
},
|
35 |
+
"type": "sentence_transformers.models.Dense"
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"transformers_version": "4.36.2"
|
39 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96024cb82b7f9abb9761d59b775a3eddc637a2867aa9028334d125934cfc3fc0
|
3 |
+
size 540522520
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"full_tokenizer_file": null,
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_len": 512,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"strip_accents": null,
|
56 |
+
"tokenize_chinese_chars": true,
|
57 |
+
"tokenizer_class": "DistilBertTokenizer",
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|