--- language: - en library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: distilbert/distilroberta-base metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: The gate is yellow. sentences: - A yellow dog is playing in the snow. - A turtle walks over the ground. - Three men are on stage playing guitars. - source_sentence: A woman is reading. sentences: - A woman is writing something. - A tiger walks around aimlessly. - Gunmen 'kill 10 tourists' in Kashmir - source_sentence: A man jumping rope sentences: - A man is climbing a rope. - Bombings kill 19 people in Iraq - Kittens are eating from dishes. - source_sentence: A baby is laughing. sentences: - A baby is crawling happily. - Kittens are eating from dishes. - SFG meeting reviews situation in Mali - source_sentence: A man shoots a man. sentences: - A man is shooting off guns. - A man is erasing a chalk board. - A girl is riding a bicycle. pipeline_tag: sentence-similarity co2_eq_emissions: emissions: 134.46101750442273 energy_consumed: 0.34592314293320514 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 1.296 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SentenceTransformer based on distilbert/distilroberta-base results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 768 type: sts-dev-768 metrics: - type: pearson_cosine value: 0.8481251400932781 name: Pearson Cosine - type: spearman_cosine value: 0.851870210632031 name: Spearman Cosine - type: pearson_manhattan value: 0.8393267568646925 name: Pearson Manhattan - type: spearman_manhattan value: 0.8384807951588668 name: Spearman Manhattan - type: pearson_euclidean value: 0.8409860761844343 name: Pearson Euclidean - type: spearman_euclidean value: 0.8402437232149903 name: Spearman Euclidean - type: pearson_dot value: 0.778375740024104 name: Pearson Dot - type: spearman_dot value: 0.7779671330832745 name: Spearman Dot - type: pearson_max value: 0.8481251400932781 name: Pearson Max - type: spearman_max value: 0.851870210632031 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 512 type: sts-dev-512 metrics: - type: pearson_cosine value: 0.8481027005283404 name: Pearson Cosine - type: spearman_cosine value: 0.8523762836460506 name: Spearman Cosine - type: pearson_manhattan value: 0.8386304289845581 name: Pearson Manhattan - type: spearman_manhattan value: 0.8377488866945335 name: Spearman Manhattan - type: pearson_euclidean value: 0.8402060724091132 name: Pearson Euclidean - type: spearman_euclidean value: 0.8394674780683281 name: Spearman Euclidean - type: pearson_dot value: 0.7711669414347555 name: Pearson Dot - type: spearman_dot value: 0.7713442697629354 name: Spearman Dot - type: pearson_max value: 0.8481027005283404 name: Pearson Max - type: spearman_max value: 0.8523762836460506 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 256 type: sts-dev-256 metrics: - type: pearson_cosine value: 0.842129976172463 name: Pearson Cosine - type: spearman_cosine value: 0.8488334736505414 name: Spearman Cosine - type: pearson_manhattan value: 0.8313278330554295 name: Pearson Manhattan - type: spearman_manhattan value: 0.8315716535622544 name: Spearman Manhattan - type: pearson_euclidean value: 0.8333448222091957 name: Pearson Euclidean - type: spearman_euclidean value: 0.8335338271135746 name: Spearman Euclidean - type: pearson_dot value: 0.7445817504026263 name: Pearson Dot - type: spearman_dot value: 0.7450058498333884 name: Spearman Dot - type: pearson_max value: 0.842129976172463 name: Pearson Max - type: spearman_max value: 0.8488334736505414 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 128 type: sts-dev-128 metrics: - type: pearson_cosine value: 0.8346971467711455 name: Pearson Cosine - type: spearman_cosine value: 0.8445473333837453 name: Spearman Cosine - type: pearson_manhattan value: 0.8240728025222037 name: Pearson Manhattan - type: spearman_manhattan value: 0.8248062249521573 name: Spearman Manhattan - type: pearson_euclidean value: 0.8254381823447683 name: Pearson Euclidean - type: spearman_euclidean value: 0.8261820268848477 name: Spearman Euclidean - type: pearson_dot value: 0.7083986436033697 name: Pearson Dot - type: spearman_dot value: 0.7093343189476312 name: Spearman Dot - type: pearson_max value: 0.8346971467711455 name: Pearson Max - type: spearman_max value: 0.8445473333837453 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 64 type: sts-dev-64 metrics: - type: pearson_cosine value: 0.8201235619233855 name: Pearson Cosine - type: spearman_cosine value: 0.8352180907883887 name: Spearman Cosine - type: pearson_manhattan value: 0.8032422421113089 name: Pearson Manhattan - type: spearman_manhattan value: 0.8047180797117756 name: Spearman Manhattan - type: pearson_euclidean value: 0.8059536263441476 name: Pearson Euclidean - type: spearman_euclidean value: 0.8072309964597537 name: Spearman Euclidean - type: pearson_dot value: 0.6360301824635421 name: Pearson Dot - type: spearman_dot value: 0.6388601952951507 name: Spearman Dot - type: pearson_max value: 0.8201235619233855 name: Pearson Max - type: spearman_max value: 0.8352180907883887 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 768 type: sts-test-768 metrics: - type: pearson_cosine value: 0.8262197279185375 name: Pearson Cosine - type: spearman_cosine value: 0.8297611922199533 name: Spearman Cosine - type: pearson_manhattan value: 0.8103738584802076 name: Pearson Manhattan - type: spearman_manhattan value: 0.8032653500693283 name: Spearman Manhattan - type: pearson_euclidean value: 0.8113711464219397 name: Pearson Euclidean - type: spearman_euclidean value: 0.8047844488402207 name: Spearman Euclidean - type: pearson_dot value: 0.7351063083543349 name: Pearson Dot - type: spearman_dot value: 0.7222898603318773 name: Spearman Dot - type: pearson_max value: 0.8262197279185375 name: Pearson Max - type: spearman_max value: 0.8297611922199533 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 512 type: sts-test-512 metrics: - type: pearson_cosine value: 0.8265289700873992 name: Pearson Cosine - type: spearman_cosine value: 0.8303420710627304 name: Spearman Cosine - type: pearson_manhattan value: 0.8092042518460232 name: Pearson Manhattan - type: spearman_manhattan value: 0.8021561300791633 name: Spearman Manhattan - type: pearson_euclidean value: 0.8099517575676378 name: Pearson Euclidean - type: spearman_euclidean value: 0.8034311442407586 name: Spearman Euclidean - type: pearson_dot value: 0.7239156858292818 name: Pearson Dot - type: spearman_dot value: 0.7141021600172974 name: Spearman Dot - type: pearson_max value: 0.8265289700873992 name: Pearson Max - type: spearman_max value: 0.8303420710627304 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 256 type: sts-test-256 metrics: - type: pearson_cosine value: 0.8247713863827557 name: Pearson Cosine - type: spearman_cosine value: 0.8304669772286988 name: Spearman Cosine - type: pearson_manhattan value: 0.8012313573943666 name: Pearson Manhattan - type: spearman_manhattan value: 0.7951476656544464 name: Spearman Manhattan - type: pearson_euclidean value: 0.8028104839960224 name: Pearson Euclidean - type: spearman_euclidean value: 0.7974260171623634 name: Spearman Euclidean - type: pearson_dot value: 0.7011271518071694 name: Pearson Dot - type: spearman_dot value: 0.6946104528279369 name: Spearman Dot - type: pearson_max value: 0.8247713863827557 name: Pearson Max - type: spearman_max value: 0.8304669772286988 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 128 type: sts-test-128 metrics: - type: pearson_cosine value: 0.8205553018873636 name: Pearson Cosine - type: spearman_cosine value: 0.8283987535951244 name: Spearman Cosine - type: pearson_manhattan value: 0.7931877193499666 name: Pearson Manhattan - type: spearman_manhattan value: 0.7878356187942884 name: Spearman Manhattan - type: pearson_euclidean value: 0.7946730313407452 name: Pearson Euclidean - type: spearman_euclidean value: 0.7891423743206649 name: Spearman Euclidean - type: pearson_dot value: 0.6617612604436709 name: Pearson Dot - type: spearman_dot value: 0.658567255717814 name: Spearman Dot - type: pearson_max value: 0.8205553018873636 name: Pearson Max - type: spearman_max value: 0.8283987535951244 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 64 type: sts-test-64 metrics: - type: pearson_cosine value: 0.8118818737650724 name: Pearson Cosine - type: spearman_cosine value: 0.8241392189948019 name: Spearman Cosine - type: pearson_manhattan value: 0.7761319753952881 name: Pearson Manhattan - type: spearman_manhattan value: 0.7738169467058665 name: Spearman Manhattan - type: pearson_euclidean value: 0.7777045912119006 name: Pearson Euclidean - type: spearman_euclidean value: 0.7745630850628562 name: Spearman Euclidean - type: pearson_dot value: 0.5934162536230442 name: Pearson Dot - type: spearman_dot value: 0.5884207612393454 name: Spearman Dot - type: pearson_max value: 0.8118818737650724 name: Pearson Max - type: spearman_max value: 0.8241392189948019 name: Spearman Max --- # SentenceTransformer based on distilbert/distilroberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co./distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [distilbert/distilroberta-base](https://huggingface.co./distilbert/distilroberta-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/distilroberta-base-nli-matryoshka-v3") # Run inference sentences = [ 'A man shoots a man.', 'A man is shooting off guns.', 'A man is erasing a chalk board.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8481 | | **spearman_cosine** | **0.8519** | | pearson_manhattan | 0.8393 | | spearman_manhattan | 0.8385 | | pearson_euclidean | 0.841 | | spearman_euclidean | 0.8402 | | pearson_dot | 0.7784 | | spearman_dot | 0.778 | | pearson_max | 0.8481 | | spearman_max | 0.8519 | #### Semantic Similarity * Dataset: `sts-dev-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8481 | | **spearman_cosine** | **0.8524** | | pearson_manhattan | 0.8386 | | spearman_manhattan | 0.8377 | | pearson_euclidean | 0.8402 | | spearman_euclidean | 0.8395 | | pearson_dot | 0.7712 | | spearman_dot | 0.7713 | | pearson_max | 0.8481 | | spearman_max | 0.8524 | #### Semantic Similarity * Dataset: `sts-dev-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8421 | | **spearman_cosine** | **0.8488** | | pearson_manhattan | 0.8313 | | spearman_manhattan | 0.8316 | | pearson_euclidean | 0.8333 | | spearman_euclidean | 0.8335 | | pearson_dot | 0.7446 | | spearman_dot | 0.745 | | pearson_max | 0.8421 | | spearman_max | 0.8488 | #### Semantic Similarity * Dataset: `sts-dev-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8347 | | **spearman_cosine** | **0.8445** | | pearson_manhattan | 0.8241 | | spearman_manhattan | 0.8248 | | pearson_euclidean | 0.8254 | | spearman_euclidean | 0.8262 | | pearson_dot | 0.7084 | | spearman_dot | 0.7093 | | pearson_max | 0.8347 | | spearman_max | 0.8445 | #### Semantic Similarity * Dataset: `sts-dev-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8201 | | **spearman_cosine** | **0.8352** | | pearson_manhattan | 0.8032 | | spearman_manhattan | 0.8047 | | pearson_euclidean | 0.806 | | spearman_euclidean | 0.8072 | | pearson_dot | 0.636 | | spearman_dot | 0.6389 | | pearson_max | 0.8201 | | spearman_max | 0.8352 | #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8262 | | **spearman_cosine** | **0.8298** | | pearson_manhattan | 0.8104 | | spearman_manhattan | 0.8033 | | pearson_euclidean | 0.8114 | | spearman_euclidean | 0.8048 | | pearson_dot | 0.7351 | | spearman_dot | 0.7223 | | pearson_max | 0.8262 | | spearman_max | 0.8298 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8265 | | **spearman_cosine** | **0.8303** | | pearson_manhattan | 0.8092 | | spearman_manhattan | 0.8022 | | pearson_euclidean | 0.81 | | spearman_euclidean | 0.8034 | | pearson_dot | 0.7239 | | spearman_dot | 0.7141 | | pearson_max | 0.8265 | | spearman_max | 0.8303 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8248 | | **spearman_cosine** | **0.8305** | | pearson_manhattan | 0.8012 | | spearman_manhattan | 0.7951 | | pearson_euclidean | 0.8028 | | spearman_euclidean | 0.7974 | | pearson_dot | 0.7011 | | spearman_dot | 0.6946 | | pearson_max | 0.8248 | | spearman_max | 0.8305 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8206 | | **spearman_cosine** | **0.8284** | | pearson_manhattan | 0.7932 | | spearman_manhattan | 0.7878 | | pearson_euclidean | 0.7947 | | spearman_euclidean | 0.7891 | | pearson_dot | 0.6618 | | spearman_dot | 0.6586 | | pearson_max | 0.8206 | | spearman_max | 0.8284 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8119 | | **spearman_cosine** | **0.8241** | | pearson_manhattan | 0.7761 | | spearman_manhattan | 0.7738 | | pearson_euclidean | 0.7777 | | spearman_euclidean | 0.7746 | | pearson_dot | 0.5934 | | spearman_dot | 0.5884 | | pearson_max | 0.8119 | | spearman_max | 0.8241 | ## Training Details ### Training Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [65dd388](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/65dd38867b600f42241d2066ba1a35fbd097fcfe) * Size: 557,850 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | A person is at a diner, ordering an omelette. | | Children smiling and waving at camera | There are children present | The kids are frowning | | A boy is jumping on skateboard in the middle of a red bridge. | The boy does a skateboarding trick. | The boy skates down the sidewalk. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### sentence-transformers/stsb * Dataset: [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 1,500 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------|:------------------------------------------------------|:------------------| | A man with a hard hat is dancing. | A man wearing a hard hat is dancing. | 1.0 | | A young child is riding a horse. | A child is riding a horse. | 0.95 | | A man is feeding a mouse to a snake. | The man is feeding a mouse to the snake. | 1.0 | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: False - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: None - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| | 0.0229 | 100 | 19.9245 | 11.3900 | 0.7772 | 0.7998 | 0.8049 | 0.7902 | 0.7919 | - | - | - | - | - | | 0.0459 | 200 | 10.6055 | 11.1510 | 0.7809 | 0.7996 | 0.8055 | 0.7954 | 0.7954 | - | - | - | - | - | | 0.0688 | 300 | 9.6389 | 11.1229 | 0.7836 | 0.8029 | 0.8114 | 0.7923 | 0.8083 | - | - | - | - | - | | 0.0918 | 400 | 8.6917 | 11.0299 | 0.7976 | 0.8117 | 0.8142 | 0.8002 | 0.8087 | - | - | - | - | - | | 0.1147 | 500 | 8.3064 | 11.3586 | 0.7895 | 0.8058 | 0.8120 | 0.7978 | 0.8065 | - | - | - | - | - | | 0.1376 | 600 | 7.8026 | 11.5047 | 0.7876 | 0.8015 | 0.8065 | 0.7934 | 0.8016 | - | - | - | - | - | | 0.1606 | 700 | 7.9978 | 11.5823 | 0.7944 | 0.8067 | 0.8072 | 0.7994 | 0.8045 | - | - | - | - | - | | 0.1835 | 800 | 6.9249 | 11.5862 | 0.7945 | 0.8054 | 0.8085 | 0.8012 | 0.8033 | - | - | - | - | - | | 0.2065 | 900 | 7.1059 | 11.2365 | 0.7895 | 0.8035 | 0.8072 | 0.7956 | 0.8031 | - | - | - | - | - | | 0.2294 | 1000 | 6.5483 | 11.3770 | 0.7853 | 0.7994 | 0.8039 | 0.7894 | 0.8024 | - | - | - | - | - | | 0.2524 | 1100 | 6.6684 | 11.5038 | 0.7968 | 0.8087 | 0.8115 | 0.8002 | 0.8065 | - | - | - | - | - | | 0.2753 | 1200 | 6.4661 | 11.4057 | 0.7980 | 0.8082 | 0.8103 | 0.8057 | 0.8070 | - | - | - | - | - | | 0.2982 | 1300 | 6.501 | 11.2521 | 0.7974 | 0.8100 | 0.8111 | 0.8025 | 0.8079 | - | - | - | - | - | | 0.3212 | 1400 | 6.0769 | 11.1458 | 0.7971 | 0.8103 | 0.8124 | 0.7982 | 0.8082 | - | - | - | - | - | | 0.3441 | 1500 | 6.1919 | 11.3180 | 0.8039 | 0.8129 | 0.8144 | 0.8094 | 0.8098 | - | - | - | - | - | | 0.3671 | 1600 | 5.8213 | 11.6196 | 0.7924 | 0.8072 | 0.8090 | 0.8003 | 0.8012 | - | - | - | - | - | | 0.3900 | 1700 | 5.534 | 11.0700 | 0.7979 | 0.8104 | 0.8132 | 0.8028 | 0.8101 | - | - | - | - | - | | 0.4129 | 1800 | 5.7536 | 11.0916 | 0.7934 | 0.8087 | 0.8149 | 0.8008 | 0.8085 | - | - | - | - | - | | 0.4359 | 1900 | 5.3778 | 11.2658 | 0.7942 | 0.8084 | 0.8104 | 0.7980 | 0.8049 | - | - | - | - | - | | 0.4588 | 2000 | 5.4925 | 11.4851 | 0.7932 | 0.8062 | 0.8086 | 0.7932 | 0.8057 | - | - | - | - | - | | 0.4818 | 2100 | 5.3125 | 11.4833 | 0.7987 | 0.8119 | 0.8154 | 0.8012 | 0.8124 | - | - | - | - | - | | 0.5047 | 2200 | 5.1914 | 11.2848 | 0.7784 | 0.7971 | 0.8037 | 0.7911 | 0.8004 | - | - | - | - | - | | 0.5276 | 2300 | 5.2921 | 11.5364 | 0.7698 | 0.7910 | 0.7974 | 0.7839 | 0.7900 | - | - | - | - | - | | 0.5506 | 2400 | 5.288 | 11.3944 | 0.7873 | 0.8011 | 0.8051 | 0.7877 | 0.8003 | - | - | - | - | - | | 0.5735 | 2500 | 5.3697 | 11.4532 | 0.7949 | 0.8077 | 0.8111 | 0.7955 | 0.8069 | - | - | - | - | - | | 0.5965 | 2600 | 5.1521 | 11.2788 | 0.7973 | 0.8095 | 0.8130 | 0.7940 | 0.8088 | - | - | - | - | - | | 0.6194 | 2700 | 5.2316 | 11.2472 | 0.7948 | 0.8077 | 0.8102 | 0.7939 | 0.8053 | - | - | - | - | - | | 0.6423 | 2800 | 5.2599 | 11.4171 | 0.7882 | 0.8029 | 0.8065 | 0.7888 | 0.8019 | - | - | - | - | - | | 0.6653 | 2900 | 5.4052 | 11.4026 | 0.7871 | 0.8005 | 0.8021 | 0.7833 | 0.7985 | - | - | - | - | - | | 0.6882 | 3000 | 5.3474 | 11.2084 | 0.7895 | 0.8047 | 0.8079 | 0.7928 | 0.8050 | - | - | - | - | - | | 0.7112 | 3100 | 5.0336 | 11.3999 | 0.8023 | 0.8150 | 0.8182 | 0.8024 | 0.8168 | - | - | - | - | - | | 0.7341 | 3200 | 5.2496 | 11.2307 | 0.8015 | 0.8137 | 0.8167 | 0.8000 | 0.8140 | - | - | - | - | - | | 0.7571 | 3300 | 3.8712 | 10.9468 | 0.8396 | 0.8440 | 0.8471 | 0.8284 | 0.8479 | - | - | - | - | - | | 0.7800 | 3400 | 2.7068 | 10.9292 | 0.8414 | 0.8453 | 0.8489 | 0.8305 | 0.8497 | - | - | - | - | - | | 0.8029 | 3500 | 2.3418 | 10.8626 | 0.8427 | 0.8467 | 0.8504 | 0.8322 | 0.8504 | - | - | - | - | - | | 0.8259 | 3600 | 2.2419 | 10.9065 | 0.8421 | 0.8467 | 0.8504 | 0.8320 | 0.8502 | - | - | - | - | - | | 0.8488 | 3700 | 2.125 | 10.9517 | 0.8424 | 0.8472 | 0.8509 | 0.8324 | 0.8510 | - | - | - | - | - | | 0.8718 | 3800 | 1.9942 | 11.0142 | 0.8438 | 0.8482 | 0.8519 | 0.8337 | 0.8517 | - | - | - | - | - | | 0.8947 | 3900 | 2.031 | 10.9662 | 0.8433 | 0.8480 | 0.8519 | 0.8340 | 0.8515 | - | - | - | - | - | | 0.9176 | 4000 | 1.9734 | 11.0054 | 0.8452 | 0.8495 | 0.8531 | 0.8354 | 0.8528 | - | - | - | - | - | | 0.9406 | 4100 | 1.9468 | 11.0183 | 0.8447 | 0.8490 | 0.8526 | 0.8348 | 0.8522 | - | - | - | - | - | | 0.9635 | 4200 | 1.9008 | 11.0154 | 0.8445 | 0.8485 | 0.8521 | 0.8352 | 0.8517 | - | - | - | - | - | | 0.9865 | 4300 | 1.8511 | 10.9966 | 0.8445 | 0.8488 | 0.8524 | 0.8352 | 0.8519 | - | - | - | - | - | | 1.0 | 4359 | - | - | - | - | - | - | - | 0.8284 | 0.8305 | 0.8303 | 0.8241 | 0.8298 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.346 kWh - **Carbon Emitted**: 0.134 kg of CO2 - **Hours Used**: 1.296 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.0.dev0 - Transformers: 4.41.0.dev0 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```