File size: 49,262 Bytes
0da87e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: The gate is yellow.
  sentences:
  - A yellow dog is playing in the snow.
  - A turtle walks over the ground.
  - Three men are on stage playing guitars.
- source_sentence: A woman is reading.
  sentences:
  - A woman is writing something.
  - A tiger walks around aimlessly.
  - Gunmen 'kill 10 tourists' in Kashmir
- source_sentence: A man jumping rope
  sentences:
  - A man is climbing a rope.
  - Bombings kill 19 people in Iraq
  - Kittens are eating from dishes.
- source_sentence: A baby is laughing.
  sentences:
  - A baby is crawling happily.
  - Kittens are eating from dishes.
  - SFG meeting reviews situation in Mali
- source_sentence: A man shoots a man.
  sentences:
  - A man is shooting off guns.
  - A man is erasing a chalk board.
  - A girl is riding a bicycle.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 134.46101750442273
  energy_consumed: 0.34592314293320514
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 1.296
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 768
      type: sts-dev-768
    metrics:
    - type: pearson_cosine
      value: 0.8481251400932781
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.851870210632031
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8393267568646925
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8384807951588668
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8409860761844343
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8402437232149903
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.778375740024104
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7779671330832745
      name: Spearman Dot
    - type: pearson_max
      value: 0.8481251400932781
      name: Pearson Max
    - type: spearman_max
      value: 0.851870210632031
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.8481027005283404
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8523762836460506
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8386304289845581
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8377488866945335
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8402060724091132
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8394674780683281
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7711669414347555
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7713442697629354
      name: Spearman Dot
    - type: pearson_max
      value: 0.8481027005283404
      name: Pearson Max
    - type: spearman_max
      value: 0.8523762836460506
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.842129976172463
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8488334736505414
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8313278330554295
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8315716535622544
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8333448222091957
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8335338271135746
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7445817504026263
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7450058498333884
      name: Spearman Dot
    - type: pearson_max
      value: 0.842129976172463
      name: Pearson Max
    - type: spearman_max
      value: 0.8488334736505414
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 128
      type: sts-dev-128
    metrics:
    - type: pearson_cosine
      value: 0.8346971467711455
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8445473333837453
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8240728025222037
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8248062249521573
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8254381823447683
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8261820268848477
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7083986436033697
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7093343189476312
      name: Spearman Dot
    - type: pearson_max
      value: 0.8346971467711455
      name: Pearson Max
    - type: spearman_max
      value: 0.8445473333837453
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 64
      type: sts-dev-64
    metrics:
    - type: pearson_cosine
      value: 0.8201235619233855
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8352180907883887
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8032422421113089
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8047180797117756
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8059536263441476
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8072309964597537
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6360301824635421
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6388601952951507
      name: Spearman Dot
    - type: pearson_max
      value: 0.8201235619233855
      name: Pearson Max
    - type: spearman_max
      value: 0.8352180907883887
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.8262197279185375
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8297611922199533
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8103738584802076
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8032653500693283
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8113711464219397
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8047844488402207
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7351063083543349
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7222898603318773
      name: Spearman Dot
    - type: pearson_max
      value: 0.8262197279185375
      name: Pearson Max
    - type: spearman_max
      value: 0.8297611922199533
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.8265289700873992
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8303420710627304
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8092042518460232
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8021561300791633
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8099517575676378
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8034311442407586
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7239156858292818
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7141021600172974
      name: Spearman Dot
    - type: pearson_max
      value: 0.8265289700873992
      name: Pearson Max
    - type: spearman_max
      value: 0.8303420710627304
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.8247713863827557
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8304669772286988
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8012313573943666
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7951476656544464
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8028104839960224
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7974260171623634
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7011271518071694
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6946104528279369
      name: Spearman Dot
    - type: pearson_max
      value: 0.8247713863827557
      name: Pearson Max
    - type: spearman_max
      value: 0.8304669772286988
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.8205553018873636
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8283987535951244
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7931877193499666
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7878356187942884
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7946730313407452
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7891423743206649
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6617612604436709
      name: Pearson Dot
    - type: spearman_dot
      value: 0.658567255717814
      name: Spearman Dot
    - type: pearson_max
      value: 0.8205553018873636
      name: Pearson Max
    - type: spearman_max
      value: 0.8283987535951244
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.8118818737650724
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8241392189948019
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7761319753952881
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7738169467058665
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7777045912119006
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7745630850628562
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5934162536230442
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5884207612393454
      name: Spearman Dot
    - type: pearson_max
      value: 0.8118818737650724
      name: Pearson Max
    - type: spearman_max
      value: 0.8241392189948019
      name: Spearman Max
---

# SentenceTransformer based on distilbert/distilroberta-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co./distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co./distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-matryoshka-v3")
# Run inference
sentences = [
    'A man shoots a man.',
    'A man is shooting off guns.',
    'A man is erasing a chalk board.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8481     |
| **spearman_cosine** | **0.8519** |
| pearson_manhattan   | 0.8393     |
| spearman_manhattan  | 0.8385     |
| pearson_euclidean   | 0.841      |
| spearman_euclidean  | 0.8402     |
| pearson_dot         | 0.7784     |
| spearman_dot        | 0.778      |
| pearson_max         | 0.8481     |
| spearman_max        | 0.8519     |

#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8481     |
| **spearman_cosine** | **0.8524** |
| pearson_manhattan   | 0.8386     |
| spearman_manhattan  | 0.8377     |
| pearson_euclidean   | 0.8402     |
| spearman_euclidean  | 0.8395     |
| pearson_dot         | 0.7712     |
| spearman_dot        | 0.7713     |
| pearson_max         | 0.8481     |
| spearman_max        | 0.8524     |

#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8421     |
| **spearman_cosine** | **0.8488** |
| pearson_manhattan   | 0.8313     |
| spearman_manhattan  | 0.8316     |
| pearson_euclidean   | 0.8333     |
| spearman_euclidean  | 0.8335     |
| pearson_dot         | 0.7446     |
| spearman_dot        | 0.745      |
| pearson_max         | 0.8421     |
| spearman_max        | 0.8488     |

#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8347     |
| **spearman_cosine** | **0.8445** |
| pearson_manhattan   | 0.8241     |
| spearman_manhattan  | 0.8248     |
| pearson_euclidean   | 0.8254     |
| spearman_euclidean  | 0.8262     |
| pearson_dot         | 0.7084     |
| spearman_dot        | 0.7093     |
| pearson_max         | 0.8347     |
| spearman_max        | 0.8445     |

#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8201     |
| **spearman_cosine** | **0.8352** |
| pearson_manhattan   | 0.8032     |
| spearman_manhattan  | 0.8047     |
| pearson_euclidean   | 0.806      |
| spearman_euclidean  | 0.8072     |
| pearson_dot         | 0.636      |
| spearman_dot        | 0.6389     |
| pearson_max         | 0.8201     |
| spearman_max        | 0.8352     |

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8262     |
| **spearman_cosine** | **0.8298** |
| pearson_manhattan   | 0.8104     |
| spearman_manhattan  | 0.8033     |
| pearson_euclidean   | 0.8114     |
| spearman_euclidean  | 0.8048     |
| pearson_dot         | 0.7351     |
| spearman_dot        | 0.7223     |
| pearson_max         | 0.8262     |
| spearman_max        | 0.8298     |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8265     |
| **spearman_cosine** | **0.8303** |
| pearson_manhattan   | 0.8092     |
| spearman_manhattan  | 0.8022     |
| pearson_euclidean   | 0.81       |
| spearman_euclidean  | 0.8034     |
| pearson_dot         | 0.7239     |
| spearman_dot        | 0.7141     |
| pearson_max         | 0.8265     |
| spearman_max        | 0.8303     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8248     |
| **spearman_cosine** | **0.8305** |
| pearson_manhattan   | 0.8012     |
| spearman_manhattan  | 0.7951     |
| pearson_euclidean   | 0.8028     |
| spearman_euclidean  | 0.7974     |
| pearson_dot         | 0.7011     |
| spearman_dot        | 0.6946     |
| pearson_max         | 0.8248     |
| spearman_max        | 0.8305     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8206     |
| **spearman_cosine** | **0.8284** |
| pearson_manhattan   | 0.7932     |
| spearman_manhattan  | 0.7878     |
| pearson_euclidean   | 0.7947     |
| spearman_euclidean  | 0.7891     |
| pearson_dot         | 0.6618     |
| spearman_dot        | 0.6586     |
| pearson_max         | 0.8206     |
| spearman_max        | 0.8284     |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8119     |
| **spearman_cosine** | **0.8241** |
| pearson_manhattan   | 0.7761     |
| spearman_manhattan  | 0.7738     |
| pearson_euclidean   | 0.7777     |
| spearman_euclidean  | 0.7746     |
| pearson_dot         | 0.5934     |
| spearman_dot        | 0.5884     |
| pearson_max         | 0.8119     |
| spearman_max        | 0.8241     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/all-nli

* Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [65dd388](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/65dd38867b600f42241d2066ba1a35fbd097fcfe)
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                         | negative                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | string                                                                           |
  | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
  | anchor                                                                     | positive                                         | negative                                                   |
  |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>A person is outdoors, on a horse.</code>   | <code>A person is at a diner, ordering an omelette.</code> |
  | <code>Children smiling and waving at camera</code>                         | <code>There are children present</code>          | <code>The kids are frowning</code>                         |
  | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code>             |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### sentence-transformers/stsb

* Dataset: [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                         | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 15.0 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.99 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                         | sentence2                                             | score             |
  |:--------------------------------------------------|:------------------------------------------------------|:------------------|
  | <code>A man with a hard hat is dancing.</code>    | <code>A man wearing a hard hat is dancing.</code>     | <code>1.0</code>  |
  | <code>A young child is riding a horse.</code>     | <code>A child is riding a horse.</code>               | <code>0.95</code> |
  | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code>  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss    | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.0229 | 100  | 19.9245       | 11.3900 | 0.7772                      | 0.7998                      | 0.8049                      | 0.7902                     | 0.7919                      | -                            | -                            | -                            | -                           | -                            |
| 0.0459 | 200  | 10.6055       | 11.1510 | 0.7809                      | 0.7996                      | 0.8055                      | 0.7954                     | 0.7954                      | -                            | -                            | -                            | -                           | -                            |
| 0.0688 | 300  | 9.6389        | 11.1229 | 0.7836                      | 0.8029                      | 0.8114                      | 0.7923                     | 0.8083                      | -                            | -                            | -                            | -                           | -                            |
| 0.0918 | 400  | 8.6917        | 11.0299 | 0.7976                      | 0.8117                      | 0.8142                      | 0.8002                     | 0.8087                      | -                            | -                            | -                            | -                           | -                            |
| 0.1147 | 500  | 8.3064        | 11.3586 | 0.7895                      | 0.8058                      | 0.8120                      | 0.7978                     | 0.8065                      | -                            | -                            | -                            | -                           | -                            |
| 0.1376 | 600  | 7.8026        | 11.5047 | 0.7876                      | 0.8015                      | 0.8065                      | 0.7934                     | 0.8016                      | -                            | -                            | -                            | -                           | -                            |
| 0.1606 | 700  | 7.9978        | 11.5823 | 0.7944                      | 0.8067                      | 0.8072                      | 0.7994                     | 0.8045                      | -                            | -                            | -                            | -                           | -                            |
| 0.1835 | 800  | 6.9249        | 11.5862 | 0.7945                      | 0.8054                      | 0.8085                      | 0.8012                     | 0.8033                      | -                            | -                            | -                            | -                           | -                            |
| 0.2065 | 900  | 7.1059        | 11.2365 | 0.7895                      | 0.8035                      | 0.8072                      | 0.7956                     | 0.8031                      | -                            | -                            | -                            | -                           | -                            |
| 0.2294 | 1000 | 6.5483        | 11.3770 | 0.7853                      | 0.7994                      | 0.8039                      | 0.7894                     | 0.8024                      | -                            | -                            | -                            | -                           | -                            |
| 0.2524 | 1100 | 6.6684        | 11.5038 | 0.7968                      | 0.8087                      | 0.8115                      | 0.8002                     | 0.8065                      | -                            | -                            | -                            | -                           | -                            |
| 0.2753 | 1200 | 6.4661        | 11.4057 | 0.7980                      | 0.8082                      | 0.8103                      | 0.8057                     | 0.8070                      | -                            | -                            | -                            | -                           | -                            |
| 0.2982 | 1300 | 6.501         | 11.2521 | 0.7974                      | 0.8100                      | 0.8111                      | 0.8025                     | 0.8079                      | -                            | -                            | -                            | -                           | -                            |
| 0.3212 | 1400 | 6.0769        | 11.1458 | 0.7971                      | 0.8103                      | 0.8124                      | 0.7982                     | 0.8082                      | -                            | -                            | -                            | -                           | -                            |
| 0.3441 | 1500 | 6.1919        | 11.3180 | 0.8039                      | 0.8129                      | 0.8144                      | 0.8094                     | 0.8098                      | -                            | -                            | -                            | -                           | -                            |
| 0.3671 | 1600 | 5.8213        | 11.6196 | 0.7924                      | 0.8072                      | 0.8090                      | 0.8003                     | 0.8012                      | -                            | -                            | -                            | -                           | -                            |
| 0.3900 | 1700 | 5.534         | 11.0700 | 0.7979                      | 0.8104                      | 0.8132                      | 0.8028                     | 0.8101                      | -                            | -                            | -                            | -                           | -                            |
| 0.4129 | 1800 | 5.7536        | 11.0916 | 0.7934                      | 0.8087                      | 0.8149                      | 0.8008                     | 0.8085                      | -                            | -                            | -                            | -                           | -                            |
| 0.4359 | 1900 | 5.3778        | 11.2658 | 0.7942                      | 0.8084                      | 0.8104                      | 0.7980                     | 0.8049                      | -                            | -                            | -                            | -                           | -                            |
| 0.4588 | 2000 | 5.4925        | 11.4851 | 0.7932                      | 0.8062                      | 0.8086                      | 0.7932                     | 0.8057                      | -                            | -                            | -                            | -                           | -                            |
| 0.4818 | 2100 | 5.3125        | 11.4833 | 0.7987                      | 0.8119                      | 0.8154                      | 0.8012                     | 0.8124                      | -                            | -                            | -                            | -                           | -                            |
| 0.5047 | 2200 | 5.1914        | 11.2848 | 0.7784                      | 0.7971                      | 0.8037                      | 0.7911                     | 0.8004                      | -                            | -                            | -                            | -                           | -                            |
| 0.5276 | 2300 | 5.2921        | 11.5364 | 0.7698                      | 0.7910                      | 0.7974                      | 0.7839                     | 0.7900                      | -                            | -                            | -                            | -                           | -                            |
| 0.5506 | 2400 | 5.288         | 11.3944 | 0.7873                      | 0.8011                      | 0.8051                      | 0.7877                     | 0.8003                      | -                            | -                            | -                            | -                           | -                            |
| 0.5735 | 2500 | 5.3697        | 11.4532 | 0.7949                      | 0.8077                      | 0.8111                      | 0.7955                     | 0.8069                      | -                            | -                            | -                            | -                           | -                            |
| 0.5965 | 2600 | 5.1521        | 11.2788 | 0.7973                      | 0.8095                      | 0.8130                      | 0.7940                     | 0.8088                      | -                            | -                            | -                            | -                           | -                            |
| 0.6194 | 2700 | 5.2316        | 11.2472 | 0.7948                      | 0.8077                      | 0.8102                      | 0.7939                     | 0.8053                      | -                            | -                            | -                            | -                           | -                            |
| 0.6423 | 2800 | 5.2599        | 11.4171 | 0.7882                      | 0.8029                      | 0.8065                      | 0.7888                     | 0.8019                      | -                            | -                            | -                            | -                           | -                            |
| 0.6653 | 2900 | 5.4052        | 11.4026 | 0.7871                      | 0.8005                      | 0.8021                      | 0.7833                     | 0.7985                      | -                            | -                            | -                            | -                           | -                            |
| 0.6882 | 3000 | 5.3474        | 11.2084 | 0.7895                      | 0.8047                      | 0.8079                      | 0.7928                     | 0.8050                      | -                            | -                            | -                            | -                           | -                            |
| 0.7112 | 3100 | 5.0336        | 11.3999 | 0.8023                      | 0.8150                      | 0.8182                      | 0.8024                     | 0.8168                      | -                            | -                            | -                            | -                           | -                            |
| 0.7341 | 3200 | 5.2496        | 11.2307 | 0.8015                      | 0.8137                      | 0.8167                      | 0.8000                     | 0.8140                      | -                            | -                            | -                            | -                           | -                            |
| 0.7571 | 3300 | 3.8712        | 10.9468 | 0.8396                      | 0.8440                      | 0.8471                      | 0.8284                     | 0.8479                      | -                            | -                            | -                            | -                           | -                            |
| 0.7800 | 3400 | 2.7068        | 10.9292 | 0.8414                      | 0.8453                      | 0.8489                      | 0.8305                     | 0.8497                      | -                            | -                            | -                            | -                           | -                            |
| 0.8029 | 3500 | 2.3418        | 10.8626 | 0.8427                      | 0.8467                      | 0.8504                      | 0.8322                     | 0.8504                      | -                            | -                            | -                            | -                           | -                            |
| 0.8259 | 3600 | 2.2419        | 10.9065 | 0.8421                      | 0.8467                      | 0.8504                      | 0.8320                     | 0.8502                      | -                            | -                            | -                            | -                           | -                            |
| 0.8488 | 3700 | 2.125         | 10.9517 | 0.8424                      | 0.8472                      | 0.8509                      | 0.8324                     | 0.8510                      | -                            | -                            | -                            | -                           | -                            |
| 0.8718 | 3800 | 1.9942        | 11.0142 | 0.8438                      | 0.8482                      | 0.8519                      | 0.8337                     | 0.8517                      | -                            | -                            | -                            | -                           | -                            |
| 0.8947 | 3900 | 2.031         | 10.9662 | 0.8433                      | 0.8480                      | 0.8519                      | 0.8340                     | 0.8515                      | -                            | -                            | -                            | -                           | -                            |
| 0.9176 | 4000 | 1.9734        | 11.0054 | 0.8452                      | 0.8495                      | 0.8531                      | 0.8354                     | 0.8528                      | -                            | -                            | -                            | -                           | -                            |
| 0.9406 | 4100 | 1.9468        | 11.0183 | 0.8447                      | 0.8490                      | 0.8526                      | 0.8348                     | 0.8522                      | -                            | -                            | -                            | -                           | -                            |
| 0.9635 | 4200 | 1.9008        | 11.0154 | 0.8445                      | 0.8485                      | 0.8521                      | 0.8352                     | 0.8517                      | -                            | -                            | -                            | -                           | -                            |
| 0.9865 | 4300 | 1.8511        | 10.9966 | 0.8445                      | 0.8488                      | 0.8524                      | 0.8352                     | 0.8519                      | -                            | -                            | -                            | -                           | -                            |
| 1.0    | 4359 | -             | -       | -                           | -                           | -                           | -                          | -                           | 0.8284                       | 0.8305                       | 0.8303                       | 0.8241                      | 0.8298                       |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.346 kWh
- **Carbon Emitted**: 0.134 kg of CO2
- **Hours Used**: 1.296 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->