--- language: - en library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - loss:Matryoshka2dLoss - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: distilbert/distilroberta-base metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: A woman is reading. sentences: - A woman is writing something. - A man helps a boy ride a bike. - A group wading across a ditch - source_sentence: A man shoots a man. sentences: - A man with a pistol shoots another man. - Suicide bomber strikes in Syria - China and Taiwan hold historic talks - source_sentence: A boy is vacuuming. sentences: - A little boy is vacuuming the floor. - 'Breivik: Jail term ''ridiculous''' - Glorious triple-gold night for Britain - source_sentence: A man is spitting. sentences: - A man is speaking. - The boy is jumping into a lake. - 10 Things to Know for Thursday - source_sentence: A plane in the sky. sentences: - Two airplanes in the sky. - Nelson Mandela undergoes surgery - Nelson Mandela undergoes surgery pipeline_tag: sentence-similarity co2_eq_emissions: emissions: 69.2573690422145 energy_consumed: 0.1781760038338226 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.626 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SentenceTransformer based on distilbert/distilroberta-base results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.8395203447657347 name: Pearson Cosine - type: spearman_cosine value: 0.8424556124488326 name: Spearman Cosine - type: pearson_manhattan value: 0.8432537220190851 name: Pearson Manhattan - type: spearman_manhattan value: 0.8435994230515586 name: Spearman Manhattan - type: pearson_euclidean value: 0.8440900768179745 name: Pearson Euclidean - type: spearman_euclidean value: 0.8449067313707376 name: Spearman Euclidean - type: pearson_dot value: 0.763767029856877 name: Pearson Dot - type: spearman_dot value: 0.7569706383510251 name: Spearman Dot - type: pearson_max value: 0.8440900768179745 name: Pearson Max - type: spearman_max value: 0.8449067313707376 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.8186702838538092 name: Pearson Cosine - type: spearman_cosine value: 0.8170686920551 name: Spearman Cosine - type: pearson_manhattan value: 0.8117192659894803 name: Pearson Manhattan - type: spearman_manhattan value: 0.804879002947593 name: Spearman Manhattan - type: pearson_euclidean value: 0.8127154744140831 name: Pearson Euclidean - type: spearman_euclidean value: 0.8058410028545979 name: Spearman Euclidean - type: pearson_dot value: 0.7396245702595934 name: Pearson Dot - type: spearman_dot value: 0.7256120569318246 name: Spearman Dot - type: pearson_max value: 0.8186702838538092 name: Pearson Max - type: spearman_max value: 0.8170686920551 name: Spearman Max --- # SentenceTransformer based on distilbert/distilroberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co./distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [distilbert/distilroberta-base](https://huggingface.co./distilbert/distilroberta-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/distilroberta-base-nli-2d-matryoshka") # Run inference sentences = [ 'A plane in the sky.', 'Two airplanes in the sky.', 'Nelson Mandela undergoes surgery', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8395 | | **spearman_cosine** | **0.8425** | | pearson_manhattan | 0.8433 | | spearman_manhattan | 0.8436 | | pearson_euclidean | 0.8441 | | spearman_euclidean | 0.8449 | | pearson_dot | 0.7638 | | spearman_dot | 0.757 | | pearson_max | 0.8441 | | spearman_max | 0.8449 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8187 | | **spearman_cosine** | **0.8171** | | pearson_manhattan | 0.8117 | | spearman_manhattan | 0.8049 | | pearson_euclidean | 0.8127 | | spearman_euclidean | 0.8058 | | pearson_dot | 0.7396 | | spearman_dot | 0.7256 | | pearson_max | 0.8187 | | spearman_max | 0.8171 | ## Training Details ### Training Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [65dd388](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/65dd38867b600f42241d2066ba1a35fbd097fcfe) * Size: 557,850 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | A person is at a diner, ordering an omelette. | | Children smiling and waving at camera | There are children present | The kids are frowning | | A boy is jumping on skateboard in the middle of a red bridge. | The boy does a skateboarding trick. | The boy skates down the sidewalk. | * Loss: [Matryoshka2dLoss](https://sbert.net/docs/package_reference/losses.html#matryoshka2dloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 } ``` ### Evaluation Dataset #### sentence-transformers/stsb * Dataset: [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 1,500 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------|:------------------------------------------------------|:------------------| | A man with a hard hat is dancing. | A man wearing a hard hat is dancing. | 1.0 | | A young child is riding a horse. | A child is riding a horse. | 0.95 | | A man is feeding a mouse to a snake. | The man is feeding a mouse to the snake. | 1.0 | * Loss: [Matryoshka2dLoss](https://sbert.net/docs/package_reference/losses.html#matryoshka2dloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: False - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: None - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:| | 0.0229 | 100 | 6.2779 | 3.9959 | 0.8008 | - | | 0.0459 | 200 | 4.3212 | 3.5818 | 0.7956 | - | | 0.0688 | 300 | 3.7135 | 3.4422 | 0.7940 | - | | 0.0918 | 400 | 3.5567 | 3.5458 | 0.7951 | - | | 0.1147 | 500 | 3.1297 | 3.1253 | 0.8050 | - | | 0.1376 | 600 | 2.7001 | 3.4366 | 0.7996 | - | | 0.1606 | 700 | 2.8664 | 3.6609 | 0.8033 | - | | 0.1835 | 800 | 2.6656 | 3.3736 | 0.7975 | - | | 0.2065 | 900 | 2.633 | 3.3735 | 0.8076 | - | | 0.2294 | 1000 | 2.4335 | 3.6499 | 0.7996 | - | | 0.2524 | 1100 | 2.4165 | 3.6301 | 0.8015 | - | | 0.2753 | 1200 | 2.2942 | 3.1541 | 0.7994 | - | | 0.2982 | 1300 | 2.2402 | 3.4284 | 0.7977 | - | | 0.3212 | 1400 | 2.2148 | 3.3775 | 0.7988 | - | | 0.3441 | 1500 | 2.2285 | 3.6097 | 0.8016 | - | | 0.3671 | 1600 | 2.0591 | 3.3839 | 0.7926 | - | | 0.3900 | 1700 | 2.0253 | 3.1113 | 0.7981 | - | | 0.4129 | 1800 | 2.0244 | 3.8289 | 0.7954 | - | | 0.4359 | 1900 | 1.8582 | 3.3515 | 0.8000 | - | | 0.4588 | 2000 | 1.977 | 3.3054 | 0.7917 | - | | 0.4818 | 2100 | 1.9028 | 3.2166 | 0.7927 | - | | 0.5047 | 2200 | 1.8316 | 3.6504 | 0.7955 | - | | 0.5276 | 2300 | 1.8404 | 3.2822 | 0.7843 | - | | 0.5506 | 2400 | 1.8455 | 3.2583 | 0.7941 | - | | 0.5735 | 2500 | 1.9488 | 3.3970 | 0.7971 | - | | 0.5965 | 2600 | 1.9403 | 2.8948 | 0.7959 | - | | 0.6194 | 2700 | 1.8884 | 3.2227 | 0.8008 | - | | 0.6423 | 2800 | 1.8655 | 3.1948 | 0.7920 | - | | 0.6653 | 2900 | 1.8567 | 3.4374 | 0.7913 | - | | 0.6882 | 3000 | 1.8423 | 3.1118 | 0.7949 | - | | 0.7112 | 3100 | 1.7475 | 3.1359 | 0.8062 | - | | 0.7341 | 3200 | 1.8166 | 2.9927 | 0.7984 | - | | 0.7571 | 3300 | 1.5626 | 3.5143 | 0.8405 | - | | 0.7800 | 3400 | 1.2038 | 3.3909 | 0.8411 | - | | 0.8029 | 3500 | 1.1579 | 3.2458 | 0.8413 | - | | 0.8259 | 3600 | 1.0978 | 3.1592 | 0.8404 | - | | 0.8488 | 3700 | 1.0283 | 2.9557 | 0.8408 | - | | 0.8718 | 3800 | 0.9993 | 3.4073 | 0.8430 | - | | 0.8947 | 3900 | 0.9727 | 3.0570 | 0.8434 | - | | 0.9176 | 4000 | 0.9692 | 2.9357 | 0.8439 | - | | 0.9406 | 4100 | 0.9412 | 2.9494 | 0.8428 | - | | 0.9635 | 4200 | 1.0063 | 3.4047 | 0.8422 | - | | 0.9865 | 4300 | 0.9678 | 3.4299 | 0.8425 | - | | 1.0 | 4359 | - | - | - | 0.8171 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.178 kWh - **Carbon Emitted**: 0.069 kg of CO2 - **Hours Used**: 0.626 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.0.dev0 - Transformers: 4.41.0.dev0 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### Matryoshka2dLoss ```bibtex @misc{li20242d, title={2D Matryoshka Sentence Embeddings}, author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li}, year={2024}, eprint={2402.14776}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```