tomaarsen HF staff commited on
Commit
5854640
·
verified ·
1 Parent(s): 98a53e6

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:CosineSimilarityLoss
10
+ base_model: distilbert/distilbert-base-uncased
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: A woman is dancing.
24
+ sentences:
25
+ - A man is dancing.
26
+ - A woman is working as a nurse.
27
+ - A man is cutting up carrots.
28
+ - source_sentence: A man shoots a man.
29
+ sentences:
30
+ - The man is aiming a gun.
31
+ - Three men are playing guitars.
32
+ - Two dogs play in the snow.
33
+ - source_sentence: A woman is reading.
34
+ sentences:
35
+ - A woman is writing something.
36
+ - Three humans are walking a dog.
37
+ - A man is peeling shrimp.
38
+ - source_sentence: A baby is laughing.
39
+ sentences:
40
+ - The baby laughed in his car seat.
41
+ - A man is working on his laptop.
42
+ - The woman is slicing green onions.
43
+ - source_sentence: A plane is landing.
44
+ sentences:
45
+ - A animated airplane is landing.
46
+ - Some cyclists stop near a sign.
47
+ - A woman is riding an elephant.
48
+ pipeline_tag: sentence-similarity
49
+ co2_eq_emissions:
50
+ emissions: 5.0253757813406565
51
+ energy_consumed: 0.012928607985913776
52
+ source: codecarbon
53
+ training_type: fine-tuning
54
+ on_cloud: false
55
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
56
+ ram_total_size: 31.777088165283203
57
+ hours_used: 0.067
58
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
59
+ model-index:
60
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
61
+ results:
62
+ - task:
63
+ type: semantic-similarity
64
+ name: Semantic Similarity
65
+ dataset:
66
+ name: sts dev
67
+ type: sts-dev
68
+ metrics:
69
+ - type: pearson_cosine
70
+ value: 0.87327521666058
71
+ name: Pearson Cosine
72
+ - type: spearman_cosine
73
+ value: 0.872005730969712
74
+ name: Spearman Cosine
75
+ - type: pearson_manhattan
76
+ value: 0.846593999264053
77
+ name: Pearson Manhattan
78
+ - type: spearman_manhattan
79
+ value: 0.84904284378845
80
+ name: Spearman Manhattan
81
+ - type: pearson_euclidean
82
+ value: 0.8463188265785382
83
+ name: Pearson Euclidean
84
+ - type: spearman_euclidean
85
+ value: 0.8489357272038075
86
+ name: Spearman Euclidean
87
+ - type: pearson_dot
88
+ value: 0.8191213704375112
89
+ name: Pearson Dot
90
+ - type: spearman_dot
91
+ value: 0.8225766807613754
92
+ name: Spearman Dot
93
+ - type: pearson_max
94
+ value: 0.87327521666058
95
+ name: Pearson Max
96
+ - type: spearman_max
97
+ value: 0.872005730969712
98
+ name: Spearman Max
99
+ - task:
100
+ type: semantic-similarity
101
+ name: Semantic Similarity
102
+ dataset:
103
+ name: sts test
104
+ type: sts-test
105
+ metrics:
106
+ - type: pearson_cosine
107
+ value: 0.8418963866996422
108
+ name: Pearson Cosine
109
+ - type: spearman_cosine
110
+ value: 0.8424081129373203
111
+ name: Spearman Cosine
112
+ - type: pearson_manhattan
113
+ value: 0.8347790870134395
114
+ name: Pearson Manhattan
115
+ - type: spearman_manhattan
116
+ value: 0.835232698454204
117
+ name: Spearman Manhattan
118
+ - type: pearson_euclidean
119
+ value: 0.8355968811193554
120
+ name: Pearson Euclidean
121
+ - type: spearman_euclidean
122
+ value: 0.8359344563739193
123
+ name: Spearman Euclidean
124
+ - type: pearson_dot
125
+ value: 0.7594306882662424
126
+ name: Pearson Dot
127
+ - type: spearman_dot
128
+ value: 0.7548478461246698
129
+ name: Spearman Dot
130
+ - type: pearson_max
131
+ value: 0.8418963866996422
132
+ name: Pearson Max
133
+ - type: spearman_max
134
+ value: 0.8424081129373203
135
+ name: Spearman Max
136
+ ---
137
+
138
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
139
+
140
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
141
+
142
+ ## Model Details
143
+
144
+ ### Model Description
145
+ - **Model Type:** Sentence Transformer
146
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 6cdc0aad91f5ae2e6712e91bc7b65d1cf5c05411 -->
147
+ - **Maximum Sequence Length:** 512 tokens
148
+ - **Output Dimensionality:** 768 tokens
149
+ - **Similarity Function:** Cosine Similarity
150
+ - **Training Dataset:**
151
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
152
+ - **Language:** en
153
+ <!-- - **License:** Unknown -->
154
+
155
+ ### Model Sources
156
+
157
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
158
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
159
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
160
+
161
+ ### Full Model Architecture
162
+
163
+ ```
164
+ SentenceTransformer(
165
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
166
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
167
+ )
168
+ ```
169
+
170
+ ## Usage
171
+
172
+ ### Direct Usage (Sentence Transformers)
173
+
174
+ First install the Sentence Transformers library:
175
+
176
+ ```bash
177
+ pip install -U sentence-transformers
178
+ ```
179
+
180
+ Then you can load this model and run inference.
181
+ ```python
182
+ from sentence_transformers import SentenceTransformer
183
+
184
+ # Download from the 🤗 Hub
185
+ model = SentenceTransformer("tomaarsen/distilbert-base-uncased-sts")
186
+ # Run inference
187
+ sentences = [
188
+ 'A plane is landing.',
189
+ 'A animated airplane is landing.',
190
+ 'Some cyclists stop near a sign.',
191
+ ]
192
+ embeddings = model.encode(sentences)
193
+ print(embeddings.shape)
194
+ # [3, 768]
195
+
196
+ # Get the similarity scores for the embeddings
197
+ similarities = model.similarity(embeddings)
198
+ print(similarities.shape)
199
+ # [3, 3]
200
+ ```
201
+
202
+ <!--
203
+ ### Direct Usage (Transformers)
204
+
205
+ <details><summary>Click to see the direct usage in Transformers</summary>
206
+
207
+ </details>
208
+ -->
209
+
210
+ <!--
211
+ ### Downstream Usage (Sentence Transformers)
212
+
213
+ You can finetune this model on your own dataset.
214
+
215
+ <details><summary>Click to expand</summary>
216
+
217
+ </details>
218
+ -->
219
+
220
+ <!--
221
+ ### Out-of-Scope Use
222
+
223
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
224
+ -->
225
+
226
+ ## Evaluation
227
+
228
+ ### Metrics
229
+
230
+ #### Semantic Similarity
231
+ * Dataset: `sts-dev`
232
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
233
+
234
+ | Metric | Value |
235
+ |:--------------------|:----------|
236
+ | pearson_cosine | 0.8733 |
237
+ | **spearman_cosine** | **0.872** |
238
+ | pearson_manhattan | 0.8466 |
239
+ | spearman_manhattan | 0.849 |
240
+ | pearson_euclidean | 0.8463 |
241
+ | spearman_euclidean | 0.8489 |
242
+ | pearson_dot | 0.8191 |
243
+ | spearman_dot | 0.8226 |
244
+ | pearson_max | 0.8733 |
245
+ | spearman_max | 0.872 |
246
+
247
+ #### Semantic Similarity
248
+ * Dataset: `sts-test`
249
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
250
+
251
+ | Metric | Value |
252
+ |:--------------------|:-----------|
253
+ | pearson_cosine | 0.8419 |
254
+ | **spearman_cosine** | **0.8424** |
255
+ | pearson_manhattan | 0.8348 |
256
+ | spearman_manhattan | 0.8352 |
257
+ | pearson_euclidean | 0.8356 |
258
+ | spearman_euclidean | 0.8359 |
259
+ | pearson_dot | 0.7594 |
260
+ | spearman_dot | 0.7548 |
261
+ | pearson_max | 0.8419 |
262
+ | spearman_max | 0.8424 |
263
+
264
+ <!--
265
+ ## Bias, Risks and Limitations
266
+
267
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
268
+ -->
269
+
270
+ <!--
271
+ ### Recommendations
272
+
273
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
274
+ -->
275
+
276
+ ## Training Details
277
+
278
+ ### Training Dataset
279
+
280
+ #### sentence-transformers/stsb
281
+
282
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
283
+ * Size: 5,749 training samples
284
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
285
+ * Approximate statistics based on the first 1000 samples:
286
+ | | sentence1 | sentence2 | score |
287
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
288
+ | type | string | string | float |
289
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
290
+ * Samples:
291
+ | sentence1 | sentence2 | score |
292
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
293
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
294
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
295
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
296
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
297
+ ```json
298
+ {
299
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
300
+ }
301
+ ```
302
+
303
+ ### Evaluation Dataset
304
+
305
+ #### sentence-transformers/stsb
306
+
307
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
308
+ * Size: 1,500 evaluation samples
309
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
310
+ * Approximate statistics based on the first 1000 samples:
311
+ | | sentence1 | sentence2 | score |
312
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
313
+ | type | string | string | float |
314
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
315
+ * Samples:
316
+ | sentence1 | sentence2 | score |
317
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
318
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
319
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
320
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
321
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
322
+ ```json
323
+ {
324
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
325
+ }
326
+ ```
327
+
328
+ ### Training Hyperparameters
329
+ #### Non-Default Hyperparameters
330
+
331
+ - `eval_strategy`: steps
332
+ - `per_device_train_batch_size`: 16
333
+ - `per_device_eval_batch_size`: 16
334
+ - `num_train_epochs`: 4
335
+ - `warmup_ratio`: 0.1
336
+ - `fp16`: True
337
+
338
+ #### All Hyperparameters
339
+ <details><summary>Click to expand</summary>
340
+
341
+ - `overwrite_output_dir`: False
342
+ - `do_predict`: False
343
+ - `eval_strategy`: steps
344
+ - `prediction_loss_only`: False
345
+ - `per_device_train_batch_size`: 16
346
+ - `per_device_eval_batch_size`: 16
347
+ - `per_gpu_train_batch_size`: None
348
+ - `per_gpu_eval_batch_size`: None
349
+ - `gradient_accumulation_steps`: 1
350
+ - `eval_accumulation_steps`: None
351
+ - `learning_rate`: 5e-05
352
+ - `weight_decay`: 0.0
353
+ - `adam_beta1`: 0.9
354
+ - `adam_beta2`: 0.999
355
+ - `adam_epsilon`: 1e-08
356
+ - `max_grad_norm`: 1.0
357
+ - `num_train_epochs`: 4
358
+ - `max_steps`: -1
359
+ - `lr_scheduler_type`: linear
360
+ - `lr_scheduler_kwargs`: {}
361
+ - `warmup_ratio`: 0.1
362
+ - `warmup_steps`: 0
363
+ - `log_level`: passive
364
+ - `log_level_replica`: warning
365
+ - `log_on_each_node`: True
366
+ - `logging_nan_inf_filter`: True
367
+ - `save_safetensors`: True
368
+ - `save_on_each_node`: False
369
+ - `save_only_model`: False
370
+ - `no_cuda`: False
371
+ - `use_cpu`: False
372
+ - `use_mps_device`: False
373
+ - `seed`: 42
374
+ - `data_seed`: None
375
+ - `jit_mode_eval`: False
376
+ - `use_ipex`: False
377
+ - `bf16`: False
378
+ - `fp16`: True
379
+ - `fp16_opt_level`: O1
380
+ - `half_precision_backend`: auto
381
+ - `bf16_full_eval`: False
382
+ - `fp16_full_eval`: False
383
+ - `tf32`: None
384
+ - `local_rank`: 0
385
+ - `ddp_backend`: None
386
+ - `tpu_num_cores`: None
387
+ - `tpu_metrics_debug`: False
388
+ - `debug`: []
389
+ - `dataloader_drop_last`: False
390
+ - `dataloader_num_workers`: 0
391
+ - `dataloader_prefetch_factor`: None
392
+ - `past_index`: -1
393
+ - `disable_tqdm`: False
394
+ - `remove_unused_columns`: True
395
+ - `label_names`: None
396
+ - `load_best_model_at_end`: False
397
+ - `ignore_data_skip`: False
398
+ - `fsdp`: []
399
+ - `fsdp_min_num_params`: 0
400
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
401
+ - `fsdp_transformer_layer_cls_to_wrap`: None
402
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
403
+ - `deepspeed`: None
404
+ - `label_smoothing_factor`: 0.0
405
+ - `optim`: adamw_torch
406
+ - `optim_args`: None
407
+ - `adafactor`: False
408
+ - `group_by_length`: False
409
+ - `length_column_name`: length
410
+ - `ddp_find_unused_parameters`: None
411
+ - `ddp_bucket_cap_mb`: None
412
+ - `ddp_broadcast_buffers`: None
413
+ - `dataloader_pin_memory`: True
414
+ - `dataloader_persistent_workers`: False
415
+ - `skip_memory_metrics`: True
416
+ - `use_legacy_prediction_loop`: False
417
+ - `push_to_hub`: False
418
+ - `resume_from_checkpoint`: None
419
+ - `hub_model_id`: None
420
+ - `hub_strategy`: every_save
421
+ - `hub_private_repo`: False
422
+ - `hub_always_push`: False
423
+ - `gradient_checkpointing`: False
424
+ - `gradient_checkpointing_kwargs`: None
425
+ - `include_inputs_for_metrics`: False
426
+ - `eval_do_concat_batches`: True
427
+ - `fp16_backend`: auto
428
+ - `push_to_hub_model_id`: None
429
+ - `push_to_hub_organization`: None
430
+ - `mp_parameters`:
431
+ - `auto_find_batch_size`: False
432
+ - `full_determinism`: False
433
+ - `torchdynamo`: None
434
+ - `ray_scope`: last
435
+ - `ddp_timeout`: 1800
436
+ - `torch_compile`: False
437
+ - `torch_compile_backend`: None
438
+ - `torch_compile_mode`: None
439
+ - `dispatch_batches`: None
440
+ - `split_batches`: None
441
+ - `include_tokens_per_second`: False
442
+ - `include_num_input_tokens_seen`: False
443
+ - `neftune_noise_alpha`: None
444
+ - `optim_target_modules`: None
445
+ - `batch_sampler`: batch_sampler
446
+ - `multi_dataset_batch_sampler`: proportional
447
+
448
+ </details>
449
+
450
+ ### Training Logs
451
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
452
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
453
+ | 0.2778 | 100 | 0.0831 | 0.0419 | 0.7999 | - |
454
+ | 0.5556 | 200 | 0.0325 | 0.0305 | 0.8437 | - |
455
+ | 0.8333 | 300 | 0.0288 | 0.0260 | 0.8600 | - |
456
+ | 1.1111 | 400 | 0.02 | 0.0270 | 0.8616 | - |
457
+ | 1.3889 | 500 | 0.014 | 0.0258 | 0.8667 | - |
458
+ | 1.6667 | 600 | 0.0122 | 0.0264 | 0.8637 | - |
459
+ | 1.9444 | 700 | 0.0124 | 0.0259 | 0.8649 | - |
460
+ | 2.2222 | 800 | 0.0074 | 0.0256 | 0.8694 | - |
461
+ | 2.5 | 900 | 0.0061 | 0.0261 | 0.8698 | - |
462
+ | 2.7778 | 1000 | 0.0057 | 0.0250 | 0.8711 | - |
463
+ | 3.0556 | 1100 | 0.0053 | 0.0251 | 0.8725 | - |
464
+ | 3.3333 | 1200 | 0.0039 | 0.0252 | 0.8719 | - |
465
+ | 3.6111 | 1300 | 0.0038 | 0.0250 | 0.8716 | - |
466
+ | 3.8889 | 1400 | 0.0038 | 0.0247 | 0.8720 | - |
467
+ | 4.0 | 1440 | - | - | - | 0.8424 |
468
+
469
+
470
+ ### Environmental Impact
471
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
472
+ - **Energy Consumed**: 0.013 kWh
473
+ - **Carbon Emitted**: 0.005 kg of CO2
474
+ - **Hours Used**: 0.067 hours
475
+
476
+ ### Training Hardware
477
+ - **On Cloud**: No
478
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
479
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
480
+ - **RAM Size**: 31.78 GB
481
+
482
+ ### Framework Versions
483
+ - Python: 3.11.6
484
+ - Sentence Transformers: 3.0.0.dev0
485
+ - Transformers: 4.41.0.dev0
486
+ - PyTorch: 2.3.0+cu121
487
+ - Accelerate: 0.26.1
488
+ - Datasets: 2.18.0
489
+ - Tokenizers: 0.19.1
490
+
491
+ ## Citation
492
+
493
+ ### BibTeX
494
+
495
+ #### Sentence Transformers
496
+ ```bibtex
497
+ @inproceedings{reimers-2019-sentence-bert,
498
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
499
+ author = "Reimers, Nils and Gurevych, Iryna",
500
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
501
+ month = "11",
502
+ year = "2019",
503
+ publisher = "Association for Computational Linguistics",
504
+ url = "https://arxiv.org/abs/1908.10084",
505
+ }
506
+ ```
507
+
508
+ <!--
509
+ ## Glossary
510
+
511
+ *Clearly define terms in order to be accessible across audiences.*
512
+ -->
513
+
514
+ <!--
515
+ ## Model Card Authors
516
+
517
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
518
+ -->
519
+
520
+ <!--
521
+ ## Model Card Contact
522
+
523
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
524
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.0.dev0",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.41.0.dev0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb8e01a1b65f4491634c8210812e38a8b5170ee51bf83289d52849d95c3762f
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 1000000000000000019884624838656,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff