--- language: - en library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - loss:SoftmaxLoss - loss:CosineSimilarityLoss base_model: google-bert/bert-base-uncased metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: the guy is dead sentences: - The dog is dead. - Men are sitting in the park. - People are outside. - source_sentence: Women are running. sentences: - Two women are running. - A animated airplane is landing. - The man sang and played his guitar. - source_sentence: The gate is yellow. sentences: - The gate is blue. - The cook is kneading the flour. - A woman puts flour on a piece of meat. - source_sentence: A parrot is talking. sentences: - A man is singing. - Two men are standing in a room. - Three dogs playing in the snow. - source_sentence: the guy is paid sentences: - A man is receiving a contract. - A man is racing on his bike. - a dog chases a cat pipeline_tag: sentence-similarity co2_eq_emissions: emissions: 6.489379533908795 energy_consumed: 0.01669499908389665 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.097 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SentenceTransformer based on google-bert/bert-base-uncased results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.8287682657838144 name: Pearson Cosine - type: spearman_cosine value: 0.8350670289838767 name: Spearman Cosine - type: pearson_manhattan value: 0.796834648877542 name: Pearson Manhattan - type: spearman_manhattan value: 0.8041000103101458 name: Spearman Manhattan - type: pearson_euclidean value: 0.7968015917572032 name: Pearson Euclidean - type: spearman_euclidean value: 0.803879972820206 name: Spearman Euclidean - type: pearson_dot value: 0.7572392072098838 name: Pearson Dot - type: spearman_dot value: 0.7696731029709327 name: Spearman Dot - type: pearson_max value: 0.8287682657838144 name: Pearson Max - type: spearman_max value: 0.8350670289838767 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.8014245911006761 name: Pearson Cosine - type: spearman_cosine value: 0.8049359058371248 name: Spearman Cosine - type: pearson_manhattan value: 0.7934883900951029 name: Pearson Manhattan - type: spearman_manhattan value: 0.793480619733962 name: Spearman Manhattan - type: pearson_euclidean value: 0.7940198430253176 name: Pearson Euclidean - type: spearman_euclidean value: 0.7942686805824551 name: Spearman Euclidean - type: pearson_dot value: 0.698878713916111 name: Pearson Dot - type: spearman_dot value: 0.6967434595564439 name: Spearman Dot - type: pearson_max value: 0.8014245911006761 name: Pearson Max - type: spearman_max value: 0.8049359058371248 name: Spearman Max --- # SentenceTransformer based on google-bert/bert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on the [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) and [sts](https://huggingface.co./datasets/sentence-transformers/stsb) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Datasets:** - [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) - [sts](https://huggingface.co./datasets/sentence-transformers/stsb) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/bert-base-uncased-multi-task") # Run inference sentences = [ 'the guy is paid', 'A man is receiving a contract.', 'A man is racing on his bike.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8288 | | **spearman_cosine** | **0.8351** | | pearson_manhattan | 0.7968 | | spearman_manhattan | 0.8041 | | pearson_euclidean | 0.7968 | | spearman_euclidean | 0.8039 | | pearson_dot | 0.7572 | | spearman_dot | 0.7697 | | pearson_max | 0.8288 | | spearman_max | 0.8351 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8014 | | **spearman_cosine** | **0.8049** | | pearson_manhattan | 0.7935 | | spearman_manhattan | 0.7935 | | pearson_euclidean | 0.794 | | spearman_euclidean | 0.7943 | | pearson_dot | 0.6989 | | spearman_dot | 0.6967 | | pearson_max | 0.8014 | | spearman_max | 0.8049 | ## Training Details ### Training Datasets #### all-nli * Dataset: [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013) * Size: 942,069 training samples * Columns: premise, hypothesis, and label * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | premise | hypothesis | label | |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------| | A person on a horse jumps over a broken down airplane. | A person is training his horse for a competition. | 1 | | A person on a horse jumps over a broken down airplane. | A person is at a diner, ordering an omelette. | 2 | | A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | 0 | * Loss: [SoftmaxLoss](https://sbert.net/docs/package_reference/losses.html#softmaxloss) #### sts * Dataset: [sts](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 5,749 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| | A plane is taking off. | An air plane is taking off. | 1.0 | | A man is playing a large flute. | A man is playing a flute. | 0.76 | | A man is spreading shreded cheese on a pizza. | A man is spreading shredded cheese on an uncooked pizza. | 0.76 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Datasets #### all-nli * Dataset: [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013) * Size: 1,000 evaluation samples * Columns: premise, hypothesis, and label * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | premise | hypothesis | label | |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------| | Two women are embracing while holding to go packages. | The sisters are hugging goodbye while holding to go packages after just eating lunch. | 1 | | Two women are embracing while holding to go packages. | Two woman are holding packages. | 0 | | Two women are embracing while holding to go packages. | The men are fighting outside a deli. | 2 | * Loss: [SoftmaxLoss](https://sbert.net/docs/package_reference/losses.html#softmaxloss) #### sts * Dataset: [sts](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 1,500 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------|:------------------------------------------------------|:------------------| | A man with a hard hat is dancing. | A man wearing a hard hat is dancing. | 1.0 | | A young child is riding a horse. | A child is riding a horse. | 0.95 | | A man is feeding a mouse to a snake. | The man is feeding a mouse to the snake. | 1.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: False - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: None - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | sts loss | all-nli loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:------:|:----:|:-------------:|:--------:|:------------:|:-----------------------:|:------------------------:| | 0.1389 | 100 | 0.5961 | 0.0470 | 1.1005 | 0.8096 | - | | 0.2778 | 200 | 0.5408 | 0.0354 | 0.9687 | 0.8229 | - | | 0.4167 | 300 | 0.5185 | 0.0373 | 0.9398 | 0.8265 | - | | 0.5556 | 400 | 0.4978 | 0.0368 | 0.9304 | 0.8200 | - | | 0.6944 | 500 | 0.5026 | 0.0347 | 0.9044 | 0.8234 | - | | 0.8333 | 600 | 0.4702 | 0.0326 | 0.8727 | 0.8300 | - | | 0.9722 | 700 | 0.4649 | 0.0328 | 0.8723 | 0.8351 | - | | 1.0 | 720 | - | - | - | - | 0.8049 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.017 kWh - **Carbon Emitted**: 0.006 kg of CO2 - **Hours Used**: 0.097 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.0.dev0 - Transformers: 4.41.0.dev0 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers and SoftmaxLoss ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```