---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:SoftmaxLoss
- loss:CosineSimilarityLoss
base_model: google-bert/bert-base-uncased
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: the guy is dead
sentences:
- The dog is dead.
- Men are sitting in the park.
- People are outside.
- source_sentence: Women are running.
sentences:
- Two women are running.
- A animated airplane is landing.
- The man sang and played his guitar.
- source_sentence: The gate is yellow.
sentences:
- The gate is blue.
- The cook is kneading the flour.
- A woman puts flour on a piece of meat.
- source_sentence: A parrot is talking.
sentences:
- A man is singing.
- Two men are standing in a room.
- Three dogs playing in the snow.
- source_sentence: the guy is paid
sentences:
- A man is receiving a contract.
- A man is racing on his bike.
- a dog chases a cat
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 6.489379533908795
energy_consumed: 0.01669499908389665
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.097
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8287682657838144
name: Pearson Cosine
- type: spearman_cosine
value: 0.8350670289838767
name: Spearman Cosine
- type: pearson_manhattan
value: 0.796834648877542
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8041000103101458
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7968015917572032
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.803879972820206
name: Spearman Euclidean
- type: pearson_dot
value: 0.7572392072098838
name: Pearson Dot
- type: spearman_dot
value: 0.7696731029709327
name: Spearman Dot
- type: pearson_max
value: 0.8287682657838144
name: Pearson Max
- type: spearman_max
value: 0.8350670289838767
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8014245911006761
name: Pearson Cosine
- type: spearman_cosine
value: 0.8049359058371248
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7934883900951029
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.793480619733962
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7940198430253176
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7942686805824551
name: Spearman Euclidean
- type: pearson_dot
value: 0.698878713916111
name: Pearson Dot
- type: spearman_dot
value: 0.6967434595564439
name: Spearman Dot
- type: pearson_max
value: 0.8014245911006761
name: Pearson Max
- type: spearman_max
value: 0.8049359058371248
name: Spearman Max
---
# SentenceTransformer based on google-bert/bert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on the [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) and [sts](https://huggingface.co./datasets/sentence-transformers/stsb) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli)
- [sts](https://huggingface.co./datasets/sentence-transformers/stsb)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-multi-task")
# Run inference
sentences = [
'the guy is paid',
'A man is receiving a contract.',
'A man is racing on his bike.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8288 |
| **spearman_cosine** | **0.8351** |
| pearson_manhattan | 0.7968 |
| spearman_manhattan | 0.8041 |
| pearson_euclidean | 0.7968 |
| spearman_euclidean | 0.8039 |
| pearson_dot | 0.7572 |
| spearman_dot | 0.7697 |
| pearson_max | 0.8288 |
| spearman_max | 0.8351 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8014 |
| **spearman_cosine** | **0.8049** |
| pearson_manhattan | 0.7935 |
| spearman_manhattan | 0.7935 |
| pearson_euclidean | 0.794 |
| spearman_euclidean | 0.7943 |
| pearson_dot | 0.6989 |
| spearman_dot | 0.6967 |
| pearson_max | 0.8014 |
| spearman_max | 0.8049 |
## Training Details
### Training Datasets
#### all-nli
* Dataset: [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013)
* Size: 942,069 training samples
* Columns: premise
, hypothesis
, and label
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details |
A person on a horse jumps over a broken down airplane.
| A person is training his horse for a competition.
| 1
|
| A person on a horse jumps over a broken down airplane.
| A person is at a diner, ordering an omelette.
| 2
|
| A person on a horse jumps over a broken down airplane.
| A person is outdoors, on a horse.
| 0
|
* Loss: [SoftmaxLoss
](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
#### sts
* Dataset: [sts](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A plane is taking off.
| An air plane is taking off.
| 1.0
|
| A man is playing a large flute.
| A man is playing a flute.
| 0.76
|
| A man is spreading shreded cheese on a pizza.
| A man is spreading shredded cheese on an uncooked pizza.
| 0.76
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Datasets
#### all-nli
* Dataset: [all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013)
* Size: 1,000 evaluation samples
* Columns: premise
, hypothesis
, and label
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | Two women are embracing while holding to go packages.
| The sisters are hugging goodbye while holding to go packages after just eating lunch.
| 1
|
| Two women are embracing while holding to go packages.
| Two woman are holding packages.
| 0
|
| Two women are embracing while holding to go packages.
| The men are fighting outside a deli.
| 2
|
* Loss: [SoftmaxLoss
](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
#### sts
* Dataset: [sts](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A man with a hard hat is dancing.
| A man wearing a hard hat is dancing.
| 1.0
|
| A young child is riding a horse.
| A child is riding a horse.
| 0.95
|
| A man is feeding a mouse to a snake.
| The man is feeding a mouse to the snake.
| 1.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters