Taishi-N324
commited on
Commit
•
59eaa88
1
Parent(s):
feb1a39
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ja
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
license: llama2
|
8 |
+
model_type: llama
|
9 |
+
---
|
10 |
+
|
11 |
+
# Swallow
|
12 |
+
|
13 |
+
Our Swallow model has undergone continuous pre-training from the [Llama 2 family](https://huggingface.co/meta-llama), primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT).
|
14 |
+
Links to other models can be found in the index.
|
15 |
+
|
16 |
+
# Model Release Updates
|
17 |
+
|
18 |
+
We are excited to share the release schedule for our latest models:
|
19 |
+
- **April 25, 2024**: Released version 1.0 of our enhanced instruction-tuned models: [Swallow-7b-instruct-v1.0](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v1.0), [Swallow-13b-instruct-v1.0](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-v1.0), and [Swallow-70b-instruct-v1.0](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-v1.0).
|
20 |
+
- **March 2, 2024**: Released the [Swallow-7b-plus-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf), a model trained with approximately twice as many Japanese tokens as [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf).
|
21 |
+
- **February 4, 2024**: Released the [Swallow-13b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf).
|
22 |
+
- **January 26, 2024**: Released the [Swallow-7b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf), [Swallow-7b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf), [Swallow-70b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf), and [Swallow-70b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)
|
23 |
+
- **December 19, 2024**: Released the [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf), [Swallow-7b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf), [Swallow-13b-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-hf), [Swallow-13b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf), [Swallow-70b-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-hf), and [Swallow-70b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf).
|
24 |
+
## Swallow Model Index
|
25 |
+
|Model|Swallow-hf|Swallow-instruct-hf|Swallow-instruct-v1.0|
|
26 |
+
|---|---|---|---|
|
27 |
+
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)|[Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v1.0)|
|
28 |
+
|7B-Plus| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf) | N/A | N/A |
|
29 |
+
|13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf)| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-v1.0)|
|
30 |
+
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf)| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-v1.0)|
|
31 |
+
|
32 |
+
## Swallow Model Index NVE (No Vocabulary Expansion)
|
33 |
+
|Model|Swallow-NVE-hf|Swallow-NVE-instruct-hf|
|
34 |
+
|---|---|---|
|
35 |
+
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf)|
|
36 |
+
|13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf) | N/A |
|
37 |
+
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)|
|
38 |
+
|
39 |
+
![logo](./logo.png)
|
40 |
+
|
41 |
+
This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).
|
42 |
+
Read our [blog post](https://zenn.dev/tokyotech_lm/articles/d6cb3a8fdfc907) or our [paper](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A8-5.pdf)
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
* **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture.
|
47 |
+
* **Language(s)**: Japanese English
|
48 |
+
* **Library**: [Megatron-LM](https://github.com/rioyokotalab/Megatron-Llama2)
|
49 |
+
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
|
50 |
+
* **Contact**: swallow[at]nlp.c.titech.ac.jp
|
51 |
+
|
52 |
+
## Instruct Model Performance
|
53 |
+
|
54 |
+
### MT-Bench JA
|
55 |
+
|
56 |
+
TODO
|
57 |
+
|
58 |
+
## Base Model Performance
|
59 |
+
|
60 |
+
### Japanese tasks
|
61 |
+
|
62 |
+
|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|
|
63 |
+
|---|---|---|---|---|---|---|---|---|---|
|
64 |
+
| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|
|
65 |
+
| Llama 2 | 7B | 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 |
|
66 |
+
| Swallow | 7B | 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 |
|
67 |
+
| Swallow-Plus | 7B | 0.5478 | 0.5493 | 0.6030 | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 |
|
68 |
+
| Swallow-NVE | 7B | 0.5433 | 0.5425 | 0.5729 | 0.8684 | 0.2117 | 0.1200 | 0.2405 | 0.1512 |
|
69 |
+
| Llama 2 | 13B | 0.6997 | 0.4415 | 0.4170 | 0.8533 | 0.2139 | 0.1320 | 0.2146 | 0.1982 |
|
70 |
+
| Swallow | 13B | 0.7837 | 0.5063 | 0.6398 | 0.9005 | 0.2168 | 0.2040 | 0.2720 | 0.1771 |
|
71 |
+
| Swallow-NVE | 13B | 0.7712 | 0.5438 | 0.6351 | 0.9030 | 0.2294 | 0.2120 | 0.2735 | 0.1817 |
|
72 |
+
| Llama 2 | 70B | 0.8686 | 0.4656 | 0.5256 | 0.9080 | 0.2361 | 0.3560 | 0.2643 | **0.2398** |
|
73 |
+
| Swallow | 70B | 0.9348 | **0.6290** | 0.6960 | 0.9176 | 0.2266 | **0.4840** | **0.3043** | 0.2298 |
|
74 |
+
| Swallow-NVE | 70B | **0.9410** | 0.5759 | **0.7024** | **0.9254** | **0.2758** | 0.4720 | 0.3042 | 0.2322 |
|
75 |
+
### English tasks
|
76 |
+
|
77 |
+
|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|
|
78 |
+
|---|---|---|---|---|---|---|---|
|
79 |
+
| | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot|
|
80 |
+
| Llama 2 | 7B | 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 |
|
81 |
+
| Swallow | 7B | 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 |
|
82 |
+
| Swallow-Plus | 7B | 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 |
|
83 |
+
| Swallow-NVE | 7B | 0.3180 | 0.5079 | 0.5329 | 0.2919 | 0.8817 | 0.0986 |
|
84 |
+
| Llama 2 | 13B | 0.3760 | 0.7255 | 0.6148 | 0.3681 | 0.9140 | 0.2403 |
|
85 |
+
| Swallow | 13B | 0.3500 | 0.5852 | 0.5660 | 0.3406 | 0.9075 | 0.2039 |
|
86 |
+
| Swallow-NVE | 13B | 0.3460 | 0.6025 | 0.5700 | 0.3478 | 0.9006 | 0.1751 |
|
87 |
+
| Llama 2 | 70B | **0.4280** | **0.8239** | **0.6742** | **0.3770** | **0.9290** | **0.5284** |
|
88 |
+
| Swallow | 70B | 0.4220 | 0.7756 | 0.6458 | 0.3745 | 0.9204 | 0.4867 |
|
89 |
+
| Swallow-NVE | 70B | 0.4240 | 0.7817 | 0.6439 | 0.3451 | 0.9256 | 0.4943 |
|
90 |
+
|
91 |
+
## Evaluation Benchmarks
|
92 |
+
|
93 |
+
### Japanese evaluation benchmarks
|
94 |
+
|
95 |
+
We used llm-jp-eval(v1.0.0) and JP Language Model Evaluation Harness(commit #9b42d41). The details are as follows:
|
96 |
+
|
97 |
+
- Multiple-choice question answering (JCommonsenseQA [Kurihara+, 2022])
|
98 |
+
- Open-ended question answering (JEMHopQA [Ishii+, 2023])
|
99 |
+
- Open-ended question answering (NIILC [Sekine, 2003])
|
100 |
+
- Machine reading comprehension (JSQuAD [Kurihara+, 2022])
|
101 |
+
- Automatic summarization (XL-Sum [Hasan+, 2021])
|
102 |
+
- Machine translation (WMT2020 ja-en [Barrault+, 2020])
|
103 |
+
- Machine translation (WMT2020 en-ja [Barrault+, 2020])
|
104 |
+
- Mathematical reasoning (MGSM [Shi+, 2023])
|
105 |
+
|
106 |
+
### English evaluation benchmarks
|
107 |
+
|
108 |
+
We used the Language Model Evaluation Harness(v.0.3.0). The details are as follows:
|
109 |
+
|
110 |
+
- Multiple-choice question answering (OpenBookQA [Mihaylov+, 2018])
|
111 |
+
- Open-ended question answering (TriviaQA [Joshi+, 2017])
|
112 |
+
- Machine reading comprehension (SQuAD 2.0 [Rajpurkar+, 2018])
|
113 |
+
- Commonsense reasoning (XWINO [Tikhonov & Ryabinin, 2021])
|
114 |
+
- Natural language inference (HellaSwag [Zellers+, 2019])
|
115 |
+
- Mathematical reasoning (GSM8k [Cobbe+, 2021])
|
116 |
+
|
117 |
+
|
118 |
+
## Usage
|
119 |
+
|
120 |
+
First install additional dependencies in [requirements.txt](./requirements.txt):
|
121 |
+
|
122 |
+
```sh
|
123 |
+
pip install -r requirements.txt
|
124 |
+
```
|
125 |
+
|
126 |
+
### Instruction format Ver1.0
|
127 |
+
This format must be adhered to strictly, as deviations may result in less optimal outputs from the model.
|
128 |
+
|
129 |
+
The template used to construct a prompt for the Instruct model is specified as follows:
|
130 |
+
|
131 |
+
```
|
132 |
+
<s>[INST] <<SYS>>\n{Instruction}\n<</SYS>>\n\n{USER_MESSAGE_1} [INST] {BOT_MESSAGE_1} </s>[INST] {USER_MESSAGE_2}[/INST]
|
133 |
+
```
|
134 |
+
|
135 |
+
Please be aware that <s> and </s> are special tokens used for the beginning of string (BOS) and end of string (EOS), respectively, while [INST] and [/INST] are considered regular strings.
|
136 |
+
|
137 |
+
### Use the instruct model Ver1.0
|
138 |
+
|
139 |
+
```python
|
140 |
+
import torch
|
141 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
142 |
+
|
143 |
+
model_name = "tokyotech-llm/Swallow-70b-instruct-v1.0"
|
144 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
145 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
146 |
+
|
147 |
+
device = "cuda"
|
148 |
+
|
149 |
+
messages = [
|
150 |
+
{"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"},
|
151 |
+
{"role": "user", "content": "東京工業大学の主なキャンパスについて教えてください"}
|
152 |
+
]
|
153 |
+
|
154 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
155 |
+
|
156 |
+
model_inputs = encodeds.to(device)
|
157 |
+
model.to(device)
|
158 |
+
|
159 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=128, do_sample=True)
|
160 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
161 |
+
print(decoded[0])
|
162 |
+
```
|
163 |
+
|
164 |
+
### Use the instruct model
|
165 |
+
|
166 |
+
**Note:** Please be aware that the inference example is based on a model version older than 1.0.
|
167 |
+
|
168 |
+
|
169 |
+
```python
|
170 |
+
import torch
|
171 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
172 |
+
|
173 |
+
model_name = "tokyotech-llm/Swallow-7b-instruct-hf"
|
174 |
+
|
175 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
176 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
|
177 |
+
|
178 |
+
|
179 |
+
PROMPT_DICT = {
|
180 |
+
"prompt_input": (
|
181 |
+
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
|
182 |
+
"リクエストを適切に完了するための回答を記述してください。\n\n"
|
183 |
+
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
|
184 |
+
|
185 |
+
),
|
186 |
+
"prompt_no_input": (
|
187 |
+
"以下に、あるタスクを説明する指示があります。"
|
188 |
+
"リクエストを適切に完了するための回答を記述してください。\n\n"
|
189 |
+
"### 指示:\n{instruction}\n\n### 応答:"
|
190 |
+
),
|
191 |
+
}
|
192 |
+
|
193 |
+
def create_prompt(instruction, input=None):
|
194 |
+
"""
|
195 |
+
Generates a prompt based on the given instruction and an optional input.
|
196 |
+
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
|
197 |
+
If no input is provided, it uses the 'prompt_no_input' template.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
instruction (str): The instruction describing the task.
|
201 |
+
input (str, optional): Additional input providing context for the task. Default is None.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
str: The generated prompt.
|
205 |
+
"""
|
206 |
+
if input:
|
207 |
+
# Use the 'prompt_input' template when additional input is provided
|
208 |
+
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
|
209 |
+
else:
|
210 |
+
# Use the 'prompt_no_input' template when no additional input is provided
|
211 |
+
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
|
212 |
+
|
213 |
+
# Example usage
|
214 |
+
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
|
215 |
+
input_example = "東京工業大学の主なキャンパスについて教えてください"
|
216 |
+
prompt = create_prompt(instruction_example, input_example)
|
217 |
+
|
218 |
+
input_ids = tokenizer.encode(
|
219 |
+
prompt,
|
220 |
+
add_special_tokens=False,
|
221 |
+
return_tensors="pt"
|
222 |
+
)
|
223 |
+
|
224 |
+
tokens = model.generate(
|
225 |
+
input_ids.to(device=model.device),
|
226 |
+
max_new_tokens=128,
|
227 |
+
temperature=0.99,
|
228 |
+
top_p=0.95,
|
229 |
+
do_sample=True,
|
230 |
+
)
|
231 |
+
|
232 |
+
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
233 |
+
print(out)
|
234 |
+
|
235 |
+
```
|
236 |
+
|
237 |
+
### Use the base model
|
238 |
+
|
239 |
+
```python
|
240 |
+
import torch
|
241 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
242 |
+
|
243 |
+
model_name = "tokyotech-llm/Swallow-7b-hf"
|
244 |
+
|
245 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
246 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
247 |
+
|
248 |
+
prompt = "東京工業大学の主なキャンパスは、"
|
249 |
+
input_ids = tokenizer.encode(
|
250 |
+
prompt,
|
251 |
+
add_special_tokens=False,
|
252 |
+
return_tensors="pt"
|
253 |
+
)
|
254 |
+
tokens = model.generate(
|
255 |
+
input_ids.to(device=model.device),
|
256 |
+
max_new_tokens=128,
|
257 |
+
temperature=0.99,
|
258 |
+
top_p=0.95,
|
259 |
+
do_sample=True,
|
260 |
+
)
|
261 |
+
|
262 |
+
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
263 |
+
print(out)
|
264 |
+
```
|
265 |
+
|
266 |
+
## Training Datasets
|
267 |
+
|
268 |
+
### Continual Pre-Training
|
269 |
+
The following datasets were used for continual pre-training.
|
270 |
+
|
271 |
+
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
|
272 |
+
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
|
273 |
+
- Swallow Corpus
|
274 |
+
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
|
275 |
+
|
276 |
+
|
277 |
+
### Instruction Tuning
|
278 |
+
|
279 |
+
#### Ver1.0
|
280 |
+
|
281 |
+
The following datasets were used for the instruction tuning.
|
282 |
+
|
283 |
+
- [OpenAssistant Conversations Dataset EN top-1 thread](https://huggingface.co/datasets/OpenAssistant/oasst2)
|
284 |
+
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja) was used, where human utterances are included but the responses are not used. Instead, the responses were generated using the [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/datasets/llm-jp/oasst1-21k-jahttps://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model.
|
285 |
+
|
286 |
+
#### Old
|
287 |
+
|
288 |
+
The following datasets were used for the instruction tuning.
|
289 |
+
|
290 |
+
- [Anthropic HH-RLHF](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja)
|
291 |
+
- [Databricks Dolly 15-k](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
|
292 |
+
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/kunishou/oasst1-89k-ja)
|
293 |
+
|
294 |
+
## Risks and Limitations
|
295 |
+
|
296 |
+
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
|
297 |
+
|
298 |
+
## Acknowledgements
|
299 |
+
|
300 |
+
We thank Meta Research for releasing Llama 2 under an open license for others to build on.
|
301 |
+
|
302 |
+
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
|
303 |
+
|
304 |
+
## License
|
305 |
+
|
306 |
+
Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
|
307 |
+
|
308 |
+
## Authors
|
309 |
+
|
310 |
+
Here are the team members:
|
311 |
+
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
|
312 |
+
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
|
313 |
+
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
|
314 |
+
- [Hiroki Iida](https://meshidenn.github.io/)
|
315 |
+
- [Mengsay Loem](https://loem-ms.github.io/)
|
316 |
+
- [Shota Hirai](https://huggingface.co/Kotemo428)
|
317 |
+
- [Kakeru Hattori](https://aya-se.vercel.app/)
|
318 |
+
- [Masanari Ohi](https://twitter.com/stjohn2007)
|
319 |
+
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
|
320 |
+
- [Rio Yokota](https://twitter.com/rioyokota)
|
321 |
+
- [Kazuki Fujii](https://twitter.com/okoge_kaz)
|
322 |
+
- [Taishi Nakamura](https://twitter.com/Setuna7777_2)
|
323 |
+
- [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
|
324 |
+
- [Ishida Shigeki](https://www.wantedly.com/id/reborn27)
|
325 |
+
|