File size: 11,323 Bytes
34615e3 e796e6a 34615e3 f596f12 34615e3 c80f2e7 3e8dd06 c80f2e7 f596f12 c80f2e7 34615e3 a1631cc 34615e3 a1631cc 34615e3 f596f12 a1631cc f596f12 34615e3 a1631cc 34615e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
---
language:
- en
- ja
library_name: transformers
pipeline_tag: text-generation
license: llama2
model_type: llama
---
# Swallow
Our Swallow model has undergone continuous pre-training from the [Llama 2 family](https://huggingface.co./meta-llama), primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT).
Links to other models can be found in the index.
## Swallow Model Index
|Model|Swallow-hf|Swallow-instruct-hf|
|---|---|---|
|7B| [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-instruct-hf)|
|7B-Plus| [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-plus-hf) | Coming Soon |
|13B| [Link](https://huggingface.co./tokyotech-llm/Swallow-13b-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-13b-instruct-hf)|
|70B| [Link](https://huggingface.co./tokyotech-llm/Swallow-70b-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-70b-instruct-hf)|
## Swallow Model Index NVE (No Vocabulary Expansion)
|Model|Swallow-NVE-hf|Swallow-NVE-instruct-hf|
|---|---|---|
|7B| [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-NVE-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-NVE-instruct-hf)|
|13B| [Link](https://huggingface.co./tokyotech-llm/Swallow-13b-NVE-hf) | Coming Soon |
|70B| [Link](https://huggingface.co./tokyotech-llm/Swallow-70b-NVE-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-70b-NVE-instruct-hf)|
We released the 7B and 70B models without vocabulary expansion on January 26th, 2024. The 13B model was released on February 4th, 2024, and its instruction-tuned version is coming soon. Swallow-7B-Plus is a model that has been trained with a larger number of Japanese tokens compared to Swallow-7B and its release date is March 2nd, 2024.
![logo](./logo.png)
This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).
Read our [blog post](https://zenn.dev/tokyotech_lm/articles/d6cb3a8fdfc907) or our [paper](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A8-5.pdf)
## Model Details
* **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture.
* **Language(s)**: Japanese English
* **Library**: [Megatron-LM](https://github.com/rioyokotalab/Megatron-Llama2)
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
* **Contact**: swallow[at]nlp.c.titech.ac.jp
## Base Model Performance
### Japanese tasks
|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|
|---|---|---|---|---|---|---|---|---|---|
| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|
| Llama 2 | 7B | 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 |
| Swallow | 7B | 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 |
| Swallow-Plus | 7B | 0.5478 | 0.5493 | 0.6030 | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 |
| Swallow-NVE | 7B | 0.5433 | 0.5425 | 0.5729 | 0.8684 | 0.2117 | 0.1200 | 0.2405 | 0.1512 |
| Llama 2 | 13B | 0.6997 | 0.4415 | 0.4170 | 0.8533 | 0.2139 | 0.1320 | 0.2146 | 0.1982 |
| Swallow | 13B | 0.7837 | 0.5063 | 0.6398 | 0.9005 | 0.2168 | 0.2040 | 0.2720 | 0.1771 |
| Swallow-NVE | 13B | 0.7712 | 0.5438 | 0.6351 | 0.9030 | 0.2294 | 0.2120 | 0.2735 | 0.1817 |
| Llama 2 | 70B | 0.8686 | 0.4656 | 0.5256 | 0.9080 | 0.2361 | 0.3560 | 0.2643 | **0.2398** |
| Swallow | 70B | 0.9348 | **0.6290** | 0.6960 | 0.9176 | 0.2266 | **0.4840** | **0.3043** | 0.2298 |
| Swallow-NVE | 70B | **0.9410** | 0.5759 | **0.7024** | **0.9254** | **0.2758** | 0.4720 | 0.3042 | 0.2322 |
### English tasks
|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|
|---|---|---|---|---|---|---|---|
| | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot|
| Llama 2 | 7B | 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 |
| Swallow | 7B | 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 |
| Swallow-Plus | 7B | 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 |
| Swallow-NVE | 7B | 0.3180 | 0.5079 | 0.5329 | 0.2919 | 0.8817 | 0.0986 |
| Llama 2 | 13B | 0.3760 | 0.7255 | 0.6148 | 0.3681 | 0.9140 | 0.2403 |
| Swallow | 13B | 0.3500 | 0.5852 | 0.5660 | 0.3406 | 0.9075 | 0.2039 |
| Swallow-NVE | 13B | 0.3460 | 0.6025 | 0.5700 | 0.3478 | 0.9006 | 0.1751 |
| Llama 2 | 70B | **0.4280** | **0.8239** | **0.6742** | **0.3770** | **0.9290** | **0.5284** |
| Swallow | 70B | 0.4220 | 0.7756 | 0.6458 | 0.3745 | 0.9204 | 0.4867 |
| Swallow-NVE | 70B | 0.4240 | 0.7817 | 0.6439 | 0.3451 | 0.9256 | 0.4943 |
## Evaluation Benchmarks
### Japanese evaluation benchmarks
We used llm-jp-eval(v1.0.0) and JP Language Model Evaluation Harness(commit #9b42d41). The details are as follows:
- Multiple-choice question answering (JCommonsenseQA [Kurihara+, 2022])
- Open-ended question answering (JEMHopQA [Ishii+, 2023])
- Open-ended question answering (NIILC [Sekine, 2003])
- Machine reading comprehension (JSQuAD [Kurihara+, 2022])
- Automatic summarization (XL-Sum [Hasan+, 2021])
- Machine translation (WMT2020 ja-en [Barrault+, 2020])
- Machine translation (WMT2020 en-ja [Barrault+, 2020])
- Mathematical reasoning (MGSM [Shi+, 2023])
### English evaluation benchmarks
We used the Language Model Evaluation Harness(v.0.3.0). The details are as follows:
- Multiple-choice question answering (OpenBookQA [Mihaylov+, 2018])
- Open-ended question answering (TriviaQA [Joshi+, 2017])
- Machine reading comprehension (SQuAD 2.0 [Rajpurkar+, 2018])
- Commonsense reasoning (XWINO [Tikhonov & Ryabinin, 2021])
- Natural language inference (HellaSwag [Zellers+, 2019])
- Mathematical reasoning (GSM8k [Cobbe+, 2021])
## Usage
First install additional dependencies in [requirements.txt](./requirements.txt):
```sh
pip install -r requirements.txt
```
### Use the instruct model
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "tokyotech-llm/Swallow-7b-instruct-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
PROMPT_DICT = {
"prompt_input": (
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
),
"prompt_no_input": (
"以下に、あるタスクを説明する指示があります。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 応答:"
),
}
def create_prompt(instruction, input=None):
"""
Generates a prompt based on the given instruction and an optional input.
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
If no input is provided, it uses the 'prompt_no_input' template.
Args:
instruction (str): The instruction describing the task.
input (str, optional): Additional input providing context for the task. Default is None.
Returns:
str: The generated prompt.
"""
if input:
# Use the 'prompt_input' template when additional input is provided
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
else:
# Use the 'prompt_no_input' template when no additional input is provided
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
# Example usage
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
input_example = "東京工業大学の主なキャンパスについて教えてください"
prompt = create_prompt(instruction_example, input_example)
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=128,
temperature=0.99,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
```
### Use the base model
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "tokyotech-llm/Swallow-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
prompt = "東京工業大学の主なキャンパスは、"
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=128,
temperature=0.99,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
```
## Training Datasets
### Continual Pre-Training
The following datasets were used for continual pre-training.
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
- [RefinedWeb](https://huggingface.co./datasets/tiiuae/falcon-refinedweb)
- Swallow Corpus
- [The Pile](https://huggingface.co./datasets/EleutherAI/pile)
### Instruction Tuning
The following datasets were used for the instruction tuning.
- [Anthropic HH-RLHF](https://huggingface.co./datasets/kunishou/hh-rlhf-49k-ja)
- [Databricks Dolly 15-k](https://huggingface.co./datasets/kunishou/databricks-dolly-15k-ja)
- [OpenAssistant Conversations Dataset](https://huggingface.co./datasets/kunishou/oasst1-89k-ja)
## Risks and Limitations
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
## Acknowledgements
We thank Meta Research for releasing Llama 2 under an open license for others to build on.
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
## License
Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
## Authors
Here are the team members:
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
- [Hiroki Iida](https://meshidenn.github.io/)
- [Mengsay Loem](https://loem-ms.github.io/)
- [Shota Hirai](https://huggingface.co./Kotemo428)
- [Kakeru Hattori](https://aya-se.vercel.app/)
- [Masanari Ohi](https://twitter.com/stjohn2007)
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
- [Rio Yokota](https://twitter.com/rioyokota)
- [Kazuki Fujii](https://twitter.com/okoge_kaz)
- [Taishi Nakamura](https://twitter.com/Setuna7777_2)
|