File size: 3,210 Bytes
2187b14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: google/long-t5-tglobal-base
library_name: peft
license: apache-2.0
metrics:
- rouge
tags:
- generated_from_trainer
model-index:
- name: long-t5-tglobal-base-lora-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# long-t5-tglobal-base-lora-finetuned
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co./google/long-t5-tglobal-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1044
- Rouge1: 18.5008
- Rouge2: 10.9163
- Rougel: 15.5588
- Rougelsum: 17.0777
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.7746 | 1.0 | 4725 | 1.1997 | 16.5663 | 8.1613 | 13.4306 | 15.1181 | 19.0 |
| 1.6751 | 2.0 | 9450 | 1.1665 | 17.3821 | 9.5041 | 14.7744 | 16.1736 | 19.0 |
| 1.6576 | 3.0 | 14175 | 1.1467 | 17.7909 | 10.0228 | 15.1104 | 16.3255 | 19.0 |
| 1.6061 | 4.0 | 18900 | 1.1407 | 17.9449 | 9.6832 | 14.8839 | 16.2538 | 19.0 |
| 1.6107 | 5.0 | 23625 | 1.1311 | 17.8787 | 9.6712 | 14.7942 | 16.1142 | 19.0 |
| 1.5935 | 6.0 | 28350 | 1.1274 | 18.1678 | 10.0074 | 14.937 | 16.4508 | 19.0 |
| 1.5649 | 7.0 | 33075 | 1.1178 | 17.9792 | 9.915 | 14.8056 | 16.2568 | 19.0 |
| 1.5707 | 8.0 | 37800 | 1.1141 | 18.0138 | 9.9492 | 15.0511 | 16.423 | 19.0 |
| 1.555 | 9.0 | 42525 | 1.1126 | 17.7218 | 9.8772 | 14.8897 | 16.3123 | 19.0 |
| 1.57 | 10.0 | 47250 | 1.1111 | 18.0723 | 10.4508 | 15.2597 | 16.6341 | 19.0 |
| 1.5189 | 11.0 | 51975 | 1.1119 | 18.2068 | 10.5754 | 15.3172 | 16.8677 | 19.0 |
| 1.5619 | 12.0 | 56700 | 1.1074 | 18.3754 | 10.6836 | 15.4124 | 16.9231 | 19.0 |
| 1.5498 | 13.0 | 61425 | 1.1056 | 18.3001 | 10.7064 | 15.3411 | 16.9528 | 19.0 |
| 1.552 | 14.0 | 66150 | 1.1028 | 18.4318 | 10.8917 | 15.4457 | 17.0401 | 19.0 |
| 1.5608 | 15.0 | 70875 | 1.1032 | 18.4332 | 10.8393 | 15.4484 | 17.0042 | 19.0 |
| 1.5288 | 16.0 | 75600 | 1.1044 | 18.5008 | 10.9163 | 15.5588 | 17.0777 | 19.0 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.2.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |