model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- eval/prediction.random.dev.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bertweet-large-tweetner7-random
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6486182247987844
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6318675293343569
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6662812210915818
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.604868641257225
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.589818811310092
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6244372176840122
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7843071034560397
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7640092115363527
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.8057129640337689
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6602409638554216
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6819690265486725
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6398546964193046
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6271520713994495
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.652241965435762
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.6095524645700295
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7720332172515403
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7978959025470653
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7477944992215879
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bertweet-large-tweetner7-random
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6486182247987844
|
94 |
+
- Precision (micro): 0.6318675293343569
|
95 |
+
- Recall (micro): 0.6662812210915818
|
96 |
+
- F1 (macro): 0.604868641257225
|
97 |
+
- Precision (macro): 0.589818811310092
|
98 |
+
- Recall (macro): 0.6244372176840122
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5359342915811088
|
104 |
+
- creative_work: 0.454661558109834
|
105 |
+
- event: 0.46186621218576907
|
106 |
+
- group: 0.6163606010016696
|
107 |
+
- location: 0.6615873015873016
|
108 |
+
- person: 0.8278614184654453
|
109 |
+
- product: 0.675809105869446
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6400171924527076, 0.6574431063551344]
|
114 |
+
- 95%: [0.6382155801831687, 0.6592086893227054]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6400171924527076, 0.6574431063551344]
|
117 |
+
- 95%: [0.6382155801831687, 0.6592086893227054]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-large-tweetner7-random/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bertweet-large-tweetner7-random/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bertweet-large-tweetner7-random")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_random
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: vinai/bertweet-large
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-large-tweetner7-random/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"random.dev": {"micro/f1": 0.6406879871002419, "micro/f1_ci": {}, "micro/recall": 0.6364121729845168, "micro/precision": 0.645021645021645, "macro/f1": 0.5987771758365046, "macro/f1_ci": {}, "macro/recall": 0.5936204855874079, "macro/precision": 0.6087739435250593, "per_entity_metric": {"corporation": {"f1": 0.5626598465473146, "f1_ci": {}, "precision": 0.5555555555555556, "recall": 0.5699481865284974}, "creative_work": {"f1": 0.5214723926380369, "f1_ci": {}, "precision": 0.5182926829268293, "recall": 0.5246913580246914}, "event": {"f1": 0.3688212927756654, "f1_ci": {}, "precision": 0.34519572953736655, "recall": 0.39591836734693875}, "group": {"f1": 0.6137724550898204, "f1_ci": {}, "precision": 0.6366459627329193, "recall": 0.5924855491329479}, "location": {"f1": 0.6449704142011835, "f1_ci": {}, "precision": 0.6228571428571429, "recall": 0.6687116564417178}, "person": {"f1": 0.8643592142188962, "f1_ci": {}, "precision": 0.8619402985074627, "recall": 0.8667917448405253}, "product": {"f1": 0.6153846153846153, "f1_ci": {}, "precision": 0.7209302325581395, "recall": 0.5367965367965368}}}, "2021.test": {"micro/f1": 0.6486182247987844, "micro/f1_ci": {"90": [0.6400171924527076, 0.6574431063551344], "95": [0.6382155801831687, 0.6592086893227054]}, "micro/recall": 0.6662812210915818, "micro/precision": 0.6318675293343569, "macro/f1": 0.604868641257225, "macro/f1_ci": {"90": [0.595296924609441, 0.614397231507266], "95": [0.5933778702735921, 0.6163061595932199]}, "macro/recall": 0.6244372176840122, "macro/precision": 0.589818811310092, "per_entity_metric": {"corporation": {"f1": 0.5359342915811088, "f1_ci": {"90": [0.5124250180674441, 0.562196264340956], "95": [0.5066242713301538, 0.5660601358658982]}, "precision": 0.49809160305343514, "recall": 0.58}, "creative_work": {"f1": 0.454661558109834, "f1_ci": {"90": [0.42294214039784905, 0.4866248288332962], "95": [0.4174022952917621, 0.49281072809973214]}, "precision": 0.42634730538922155, "recall": 0.48700410396716826}, "event": {"f1": 0.46186621218576907, "f1_ci": {"90": [0.4407249060721636, 0.48402759846047894], "95": [0.43625117639460426, 0.4896707137226466]}, "precision": 0.4342948717948718, "recall": 0.4931756141947225}, "group": {"f1": 0.6163606010016696, "f1_ci": {"90": [0.5951285544493952, 0.6383988899613899], "95": [0.5921567684006442, 0.6431355549407772]}, "precision": 0.6249153689911984, "recall": 0.6080368906455863}, "location": {"f1": 0.6615873015873016, "f1_ci": {"90": [0.6349800972344961, 0.6883097309494146], "95": [0.6280602263375301, 0.6938339172840142]}, "precision": 0.6065192083818394, "recall": 0.7276536312849162}, "person": {"f1": 0.8278614184654453, "f1_ci": {"90": [0.8174552782574815, 0.8383023554114327], "95": [0.8153046175852993, 0.840402111046631]}, "precision": 0.814709032488397, "recall": 0.8414454277286135}, "product": {"f1": 0.675809105869446, "f1_ci": {"90": [0.6533841788755885, 0.6975096627158484], "95": [0.648618174354878, 0.7003805018510901]}, "precision": 0.7238542890716804, "recall": 0.6337448559670782}}}, "2020.test": {"micro/f1": 0.6602409638554216, "micro/f1_ci": {"90": [0.6396879277900763, 0.6792509981861777], "95": [0.6349100561142579, 0.6825887859642396]}, "micro/recall": 0.6398546964193046, "micro/precision": 0.6819690265486725, "macro/f1": 0.6271520713994495, "macro/f1_ci": {"90": [0.6033849011192637, 0.6476622153533104], "95": [0.6003911437652572, 0.6517141318434708]}, "macro/recall": 0.6095524645700295, "macro/precision": 0.652241965435762, "per_entity_metric": {"corporation": {"f1": 0.578125, "f1_ci": {"90": [0.516110546261207, 0.6295629539951574], "95": [0.5061691209281571, 0.6428661162957645]}, "precision": 0.5751295336787565, "recall": 0.581151832460733}, "creative_work": {"f1": 0.5819209039548022, "f1_ci": {"90": [0.5173447188077885, 0.6378554936846392], "95": [0.5104798432384638, 0.6490518162393163]}, "precision": 0.5885714285714285, "recall": 0.5754189944134078}, "event": {"f1": 0.4763572679509632, "f1_ci": {"90": [0.4245514079895219, 0.523213358070501], "95": [0.4141386430678466, 0.532264690402697]}, "precision": 0.4444444444444444, "recall": 0.5132075471698113}, "group": {"f1": 0.5878003696857671, "f1_ci": {"90": [0.5342837363973966, 0.6421063394683026], "95": [0.5218799565453557, 0.6518635025754232]}, "precision": 0.691304347826087, "recall": 0.5112540192926045}, "location": {"f1": 0.6824925816023738, "f1_ci": {"90": [0.6153846153846154, 0.740751896474788], "95": [0.6038780663780664, 0.7509359340481707]}, "precision": 0.6686046511627907, "recall": 0.696969696969697}, "person": {"f1": 0.8336221837088388, "f1_ci": {"90": [0.8053213941676154, 0.8559769434579175], "95": [0.7985865724381626, 0.861693433325605]}, "precision": 0.8620071684587813, "recall": 0.8070469798657718}, "product": {"f1": 0.649746192893401, "f1_ci": {"90": [0.5962006778842162, 0.7002640572369876], "95": [0.581727559347181, 0.7086697496146315]}, "precision": 0.735632183908046, "recall": 0.5818181818181818}}}, "2021.test (span detection)": {"micro/f1": 0.7843071034560397, "micro/f1_ci": {}, "micro/recall": 0.8057129640337689, "micro/precision": 0.7640092115363527, "macro/f1": 0.7843071034560397, "macro/f1_ci": {}, "macro/recall": 0.8057129640337689, "macro/precision": 0.7640092115363527}, "2020.test (span detection)": {"micro/f1": 0.7720332172515403, "micro/f1_ci": {}, "micro/recall": 0.7477944992215879, "micro/precision": 0.7978959025470653, "macro/f1": 0.7720332172515403, "macro/f1_ci": {}, "macro/recall": 0.7477944992215879, "macro/precision": 0.7978959025470653}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6602409638554216, "micro/f1_ci": {"90": [0.6396879277900763, 0.6792509981861777], "95": [0.6349100561142579, 0.6825887859642396]}, "micro/recall": 0.6398546964193046, "micro/precision": 0.6819690265486725, "macro/f1": 0.6271520713994495, "macro/f1_ci": {"90": [0.6033849011192637, 0.6476622153533104], "95": [0.6003911437652572, 0.6517141318434708]}, "macro/recall": 0.6095524645700295, "macro/precision": 0.652241965435762, "per_entity_metric": {"corporation": {"f1": 0.578125, "f1_ci": {"90": [0.516110546261207, 0.6295629539951574], "95": [0.5061691209281571, 0.6428661162957645]}, "precision": 0.5751295336787565, "recall": 0.581151832460733}, "creative_work": {"f1": 0.5819209039548022, "f1_ci": {"90": [0.5173447188077885, 0.6378554936846392], "95": [0.5104798432384638, 0.6490518162393163]}, "precision": 0.5885714285714285, "recall": 0.5754189944134078}, "event": {"f1": 0.4763572679509632, "f1_ci": {"90": [0.4245514079895219, 0.523213358070501], "95": [0.4141386430678466, 0.532264690402697]}, "precision": 0.4444444444444444, "recall": 0.5132075471698113}, "group": {"f1": 0.5878003696857671, "f1_ci": {"90": [0.5342837363973966, 0.6421063394683026], "95": [0.5218799565453557, 0.6518635025754232]}, "precision": 0.691304347826087, "recall": 0.5112540192926045}, "location": {"f1": 0.6824925816023738, "f1_ci": {"90": [0.6153846153846154, 0.740751896474788], "95": [0.6038780663780664, 0.7509359340481707]}, "precision": 0.6686046511627907, "recall": 0.696969696969697}, "person": {"f1": 0.8336221837088388, "f1_ci": {"90": [0.8053213941676154, 0.8559769434579175], "95": [0.7985865724381626, 0.861693433325605]}, "precision": 0.8620071684587813, "recall": 0.8070469798657718}, "product": {"f1": 0.649746192893401, "f1_ci": {"90": [0.5962006778842162, 0.7002640572369876], "95": [0.581727559347181, 0.7086697496146315]}, "precision": 0.735632183908046, "recall": 0.5818181818181818}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6486182247987844, "micro/f1_ci": {"90": [0.6400171924527076, 0.6574431063551344], "95": [0.6382155801831687, 0.6592086893227054]}, "micro/recall": 0.6662812210915818, "micro/precision": 0.6318675293343569, "macro/f1": 0.604868641257225, "macro/f1_ci": {"90": [0.595296924609441, 0.614397231507266], "95": [0.5933778702735921, 0.6163061595932199]}, "macro/recall": 0.6244372176840122, "macro/precision": 0.589818811310092, "per_entity_metric": {"corporation": {"f1": 0.5359342915811088, "f1_ci": {"90": [0.5124250180674441, 0.562196264340956], "95": [0.5066242713301538, 0.5660601358658982]}, "precision": 0.49809160305343514, "recall": 0.58}, "creative_work": {"f1": 0.454661558109834, "f1_ci": {"90": [0.42294214039784905, 0.4866248288332962], "95": [0.4174022952917621, 0.49281072809973214]}, "precision": 0.42634730538922155, "recall": 0.48700410396716826}, "event": {"f1": 0.46186621218576907, "f1_ci": {"90": [0.4407249060721636, 0.48402759846047894], "95": [0.43625117639460426, 0.4896707137226466]}, "precision": 0.4342948717948718, "recall": 0.4931756141947225}, "group": {"f1": 0.6163606010016696, "f1_ci": {"90": [0.5951285544493952, 0.6383988899613899], "95": [0.5921567684006442, 0.6431355549407772]}, "precision": 0.6249153689911984, "recall": 0.6080368906455863}, "location": {"f1": 0.6615873015873016, "f1_ci": {"90": [0.6349800972344961, 0.6883097309494146], "95": [0.6280602263375301, 0.6938339172840142]}, "precision": 0.6065192083818394, "recall": 0.7276536312849162}, "person": {"f1": 0.8278614184654453, "f1_ci": {"90": [0.8174552782574815, 0.8383023554114327], "95": [0.8153046175852993, 0.840402111046631]}, "precision": 0.814709032488397, "recall": 0.8414454277286135}, "product": {"f1": 0.675809105869446, "f1_ci": {"90": [0.6533841788755885, 0.6975096627158484], "95": [0.648618174354878, 0.7003805018510901]}, "precision": 0.7238542890716804, "recall": 0.6337448559670782}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7720332172515403, "micro/f1_ci": {}, "micro/recall": 0.7477944992215879, "micro/precision": 0.7978959025470653, "macro/f1": 0.7720332172515403, "macro/f1_ci": {}, "macro/recall": 0.7477944992215879, "macro/precision": 0.7978959025470653}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7843071034560397, "micro/f1_ci": {}, "micro/recall": 0.8057129640337689, "micro/precision": 0.7640092115363527, "macro/f1": 0.7843071034560397, "macro/f1_ci": {}, "macro/recall": 0.8057129640337689, "macro/precision": 0.7640092115363527}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.random.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "vinai/bertweet-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|