asahi417 commited on
Commit
4c71791
1 Parent(s): 20153ec

model update

Browse files
README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - tner/tweetner7
4
+ metrics:
5
+ - f1
6
+ - precision
7
+ - recall
8
+ model-index:
9
+ - name: tner/bertweet-large-tweetner7-random
10
+ results:
11
+ - task:
12
+ name: Token Classification
13
+ type: token-classification
14
+ dataset:
15
+ name: tner/tweetner7/test_2021
16
+ type: tner/tweetner7/test_2021
17
+ args: tner/tweetner7/test_2021
18
+ metrics:
19
+ - name: F1
20
+ type: f1
21
+ value: 0.6486182247987844
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.6318675293343569
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.6662812210915818
28
+ - name: F1 (macro)
29
+ type: f1_macro
30
+ value: 0.604868641257225
31
+ - name: Precision (macro)
32
+ type: precision_macro
33
+ value: 0.589818811310092
34
+ - name: Recall (macro)
35
+ type: recall_macro
36
+ value: 0.6244372176840122
37
+ - name: F1 (entity span)
38
+ type: f1_entity_span
39
+ value: 0.7843071034560397
40
+ - name: Precision (entity span)
41
+ type: precision_entity_span
42
+ value: 0.7640092115363527
43
+ - name: Recall (entity span)
44
+ type: recall_entity_span
45
+ value: 0.8057129640337689
46
+ - task:
47
+ name: Token Classification
48
+ type: token-classification
49
+ dataset:
50
+ name: tner/tweetner7/test_2020
51
+ type: tner/tweetner7/test_2020
52
+ args: tner/tweetner7/test_2020
53
+ metrics:
54
+ - name: F1
55
+ type: f1
56
+ value: 0.6602409638554216
57
+ - name: Precision
58
+ type: precision
59
+ value: 0.6819690265486725
60
+ - name: Recall
61
+ type: recall
62
+ value: 0.6398546964193046
63
+ - name: F1 (macro)
64
+ type: f1_macro
65
+ value: 0.6271520713994495
66
+ - name: Precision (macro)
67
+ type: precision_macro
68
+ value: 0.652241965435762
69
+ - name: Recall (macro)
70
+ type: recall_macro
71
+ value: 0.6095524645700295
72
+ - name: F1 (entity span)
73
+ type: f1_entity_span
74
+ value: 0.7720332172515403
75
+ - name: Precision (entity span)
76
+ type: precision_entity_span
77
+ value: 0.7978959025470653
78
+ - name: Recall (entity span)
79
+ type: recall_entity_span
80
+ value: 0.7477944992215879
81
+
82
+ pipeline_tag: token-classification
83
+ widget:
84
+ - text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
85
+ example_title: "NER Example 1"
86
+ ---
87
+ # tner/bertweet-large-tweetner7-random
88
+
89
+ This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the
90
+ [tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
91
+ Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
92
+ for more detail). It achieves the following results on the test set of 2021:
93
+ - F1 (micro): 0.6486182247987844
94
+ - Precision (micro): 0.6318675293343569
95
+ - Recall (micro): 0.6662812210915818
96
+ - F1 (macro): 0.604868641257225
97
+ - Precision (macro): 0.589818811310092
98
+ - Recall (macro): 0.6244372176840122
99
+
100
+
101
+
102
+ The per-entity breakdown of the F1 score on the test set are below:
103
+ - corporation: 0.5359342915811088
104
+ - creative_work: 0.454661558109834
105
+ - event: 0.46186621218576907
106
+ - group: 0.6163606010016696
107
+ - location: 0.6615873015873016
108
+ - person: 0.8278614184654453
109
+ - product: 0.675809105869446
110
+
111
+ For F1 scores, the confidence interval is obtained by bootstrap as below:
112
+ - F1 (micro):
113
+ - 90%: [0.6400171924527076, 0.6574431063551344]
114
+ - 95%: [0.6382155801831687, 0.6592086893227054]
115
+ - F1 (macro):
116
+ - 90%: [0.6400171924527076, 0.6574431063551344]
117
+ - 95%: [0.6382155801831687, 0.6592086893227054]
118
+
119
+ Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-large-tweetner7-random/raw/main/eval/metric.json)
120
+ and [metric file of entity span](https://huggingface.co/tner/bertweet-large-tweetner7-random/raw/main/eval/metric_span.json).
121
+
122
+ ### Usage
123
+ This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
124
+ ```shell
125
+ pip install tner
126
+ ```
127
+ and activate model as below.
128
+ ```python
129
+ from tner import TransformersNER
130
+ model = TransformersNER("tner/bertweet-large-tweetner7-random")
131
+ model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
132
+ ```
133
+ It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
134
+
135
+ ### Training hyperparameters
136
+
137
+ The following hyperparameters were used during training:
138
+ - dataset: ['tner/tweetner7']
139
+ - dataset_split: train_random
140
+ - dataset_name: None
141
+ - local_dataset: None
142
+ - model: vinai/bertweet-large
143
+ - crf: True
144
+ - max_length: 128
145
+ - epoch: 30
146
+ - batch_size: 32
147
+ - lr: 1e-05
148
+ - random_seed: 0
149
+ - gradient_accumulation_steps: 1
150
+ - weight_decay: 1e-07
151
+ - lr_warmup_step_ratio: 0.3
152
+ - max_grad_norm: 1
153
+
154
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-large-tweetner7-random/raw/main/trainer_config.json).
155
+
156
+ ### Reference
157
+ If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
158
+
159
+ ```
160
+
161
+ @inproceedings{ushio-camacho-collados-2021-ner,
162
+ title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
163
+ author = "Ushio, Asahi and
164
+ Camacho-Collados, Jose",
165
+ booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
166
+ month = apr,
167
+ year = "2021",
168
+ address = "Online",
169
+ publisher = "Association for Computational Linguistics",
170
+ url = "https://aclanthology.org/2021.eacl-demos.7",
171
+ doi = "10.18653/v1/2021.eacl-demos.7",
172
+ pages = "53--62",
173
+ abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
174
+ }
175
+
176
+ ```
eval/metric.json DELETED
@@ -1 +0,0 @@
1
- {"random.dev": {"micro/f1": 0.6406879871002419, "micro/f1_ci": {}, "micro/recall": 0.6364121729845168, "micro/precision": 0.645021645021645, "macro/f1": 0.5987771758365046, "macro/f1_ci": {}, "macro/recall": 0.5936204855874079, "macro/precision": 0.6087739435250593, "per_entity_metric": {"corporation": {"f1": 0.5626598465473146, "f1_ci": {}, "precision": 0.5555555555555556, "recall": 0.5699481865284974}, "creative_work": {"f1": 0.5214723926380369, "f1_ci": {}, "precision": 0.5182926829268293, "recall": 0.5246913580246914}, "event": {"f1": 0.3688212927756654, "f1_ci": {}, "precision": 0.34519572953736655, "recall": 0.39591836734693875}, "group": {"f1": 0.6137724550898204, "f1_ci": {}, "precision": 0.6366459627329193, "recall": 0.5924855491329479}, "location": {"f1": 0.6449704142011835, "f1_ci": {}, "precision": 0.6228571428571429, "recall": 0.6687116564417178}, "person": {"f1": 0.8643592142188962, "f1_ci": {}, "precision": 0.8619402985074627, "recall": 0.8667917448405253}, "product": {"f1": 0.6153846153846153, "f1_ci": {}, "precision": 0.7209302325581395, "recall": 0.5367965367965368}}}, "2021.test": {"micro/f1": 0.6486182247987844, "micro/f1_ci": {"90": [0.6400171924527076, 0.6574431063551344], "95": [0.6382155801831687, 0.6592086893227054]}, "micro/recall": 0.6662812210915818, "micro/precision": 0.6318675293343569, "macro/f1": 0.604868641257225, "macro/f1_ci": {"90": [0.595296924609441, 0.614397231507266], "95": [0.5933778702735921, 0.6163061595932199]}, "macro/recall": 0.6244372176840122, "macro/precision": 0.589818811310092, "per_entity_metric": {"corporation": {"f1": 0.5359342915811088, "f1_ci": {"90": [0.5124250180674441, 0.562196264340956], "95": [0.5066242713301538, 0.5660601358658982]}, "precision": 0.49809160305343514, "recall": 0.58}, "creative_work": {"f1": 0.454661558109834, "f1_ci": {"90": [0.42294214039784905, 0.4866248288332962], "95": [0.4174022952917621, 0.49281072809973214]}, "precision": 0.42634730538922155, "recall": 0.48700410396716826}, "event": {"f1": 0.46186621218576907, "f1_ci": {"90": [0.4407249060721636, 0.48402759846047894], "95": [0.43625117639460426, 0.4896707137226466]}, "precision": 0.4342948717948718, "recall": 0.4931756141947225}, "group": {"f1": 0.6163606010016696, "f1_ci": {"90": [0.5951285544493952, 0.6383988899613899], "95": [0.5921567684006442, 0.6431355549407772]}, "precision": 0.6249153689911984, "recall": 0.6080368906455863}, "location": {"f1": 0.6615873015873016, "f1_ci": {"90": [0.6349800972344961, 0.6883097309494146], "95": [0.6280602263375301, 0.6938339172840142]}, "precision": 0.6065192083818394, "recall": 0.7276536312849162}, "person": {"f1": 0.8278614184654453, "f1_ci": {"90": [0.8174552782574815, 0.8383023554114327], "95": [0.8153046175852993, 0.840402111046631]}, "precision": 0.814709032488397, "recall": 0.8414454277286135}, "product": {"f1": 0.675809105869446, "f1_ci": {"90": [0.6533841788755885, 0.6975096627158484], "95": [0.648618174354878, 0.7003805018510901]}, "precision": 0.7238542890716804, "recall": 0.6337448559670782}}}, "2020.test": {"micro/f1": 0.6602409638554216, "micro/f1_ci": {"90": [0.6396879277900763, 0.6792509981861777], "95": [0.6349100561142579, 0.6825887859642396]}, "micro/recall": 0.6398546964193046, "micro/precision": 0.6819690265486725, "macro/f1": 0.6271520713994495, "macro/f1_ci": {"90": [0.6033849011192637, 0.6476622153533104], "95": [0.6003911437652572, 0.6517141318434708]}, "macro/recall": 0.6095524645700295, "macro/precision": 0.652241965435762, "per_entity_metric": {"corporation": {"f1": 0.578125, "f1_ci": {"90": [0.516110546261207, 0.6295629539951574], "95": [0.5061691209281571, 0.6428661162957645]}, "precision": 0.5751295336787565, "recall": 0.581151832460733}, "creative_work": {"f1": 0.5819209039548022, "f1_ci": {"90": [0.5173447188077885, 0.6378554936846392], "95": [0.5104798432384638, 0.6490518162393163]}, "precision": 0.5885714285714285, "recall": 0.5754189944134078}, "event": {"f1": 0.4763572679509632, "f1_ci": {"90": [0.4245514079895219, 0.523213358070501], "95": [0.4141386430678466, 0.532264690402697]}, "precision": 0.4444444444444444, "recall": 0.5132075471698113}, "group": {"f1": 0.5878003696857671, "f1_ci": {"90": [0.5342837363973966, 0.6421063394683026], "95": [0.5218799565453557, 0.6518635025754232]}, "precision": 0.691304347826087, "recall": 0.5112540192926045}, "location": {"f1": 0.6824925816023738, "f1_ci": {"90": [0.6153846153846154, 0.740751896474788], "95": [0.6038780663780664, 0.7509359340481707]}, "precision": 0.6686046511627907, "recall": 0.696969696969697}, "person": {"f1": 0.8336221837088388, "f1_ci": {"90": [0.8053213941676154, 0.8559769434579175], "95": [0.7985865724381626, 0.861693433325605]}, "precision": 0.8620071684587813, "recall": 0.8070469798657718}, "product": {"f1": 0.649746192893401, "f1_ci": {"90": [0.5962006778842162, 0.7002640572369876], "95": [0.581727559347181, 0.7086697496146315]}, "precision": 0.735632183908046, "recall": 0.5818181818181818}}}, "2021.test (span detection)": {"micro/f1": 0.7843071034560397, "micro/f1_ci": {}, "micro/recall": 0.8057129640337689, "micro/precision": 0.7640092115363527, "macro/f1": 0.7843071034560397, "macro/f1_ci": {}, "macro/recall": 0.8057129640337689, "macro/precision": 0.7640092115363527}, "2020.test (span detection)": {"micro/f1": 0.7720332172515403, "micro/f1_ci": {}, "micro/recall": 0.7477944992215879, "micro/precision": 0.7978959025470653, "macro/f1": 0.7720332172515403, "macro/f1_ci": {}, "macro/recall": 0.7477944992215879, "macro/precision": 0.7978959025470653}}
 
 
eval/metric.test_2020.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.6602409638554216, "micro/f1_ci": {"90": [0.6396879277900763, 0.6792509981861777], "95": [0.6349100561142579, 0.6825887859642396]}, "micro/recall": 0.6398546964193046, "micro/precision": 0.6819690265486725, "macro/f1": 0.6271520713994495, "macro/f1_ci": {"90": [0.6033849011192637, 0.6476622153533104], "95": [0.6003911437652572, 0.6517141318434708]}, "macro/recall": 0.6095524645700295, "macro/precision": 0.652241965435762, "per_entity_metric": {"corporation": {"f1": 0.578125, "f1_ci": {"90": [0.516110546261207, 0.6295629539951574], "95": [0.5061691209281571, 0.6428661162957645]}, "precision": 0.5751295336787565, "recall": 0.581151832460733}, "creative_work": {"f1": 0.5819209039548022, "f1_ci": {"90": [0.5173447188077885, 0.6378554936846392], "95": [0.5104798432384638, 0.6490518162393163]}, "precision": 0.5885714285714285, "recall": 0.5754189944134078}, "event": {"f1": 0.4763572679509632, "f1_ci": {"90": [0.4245514079895219, 0.523213358070501], "95": [0.4141386430678466, 0.532264690402697]}, "precision": 0.4444444444444444, "recall": 0.5132075471698113}, "group": {"f1": 0.5878003696857671, "f1_ci": {"90": [0.5342837363973966, 0.6421063394683026], "95": [0.5218799565453557, 0.6518635025754232]}, "precision": 0.691304347826087, "recall": 0.5112540192926045}, "location": {"f1": 0.6824925816023738, "f1_ci": {"90": [0.6153846153846154, 0.740751896474788], "95": [0.6038780663780664, 0.7509359340481707]}, "precision": 0.6686046511627907, "recall": 0.696969696969697}, "person": {"f1": 0.8336221837088388, "f1_ci": {"90": [0.8053213941676154, 0.8559769434579175], "95": [0.7985865724381626, 0.861693433325605]}, "precision": 0.8620071684587813, "recall": 0.8070469798657718}, "product": {"f1": 0.649746192893401, "f1_ci": {"90": [0.5962006778842162, 0.7002640572369876], "95": [0.581727559347181, 0.7086697496146315]}, "precision": 0.735632183908046, "recall": 0.5818181818181818}}}
eval/metric.test_2021.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.6486182247987844, "micro/f1_ci": {"90": [0.6400171924527076, 0.6574431063551344], "95": [0.6382155801831687, 0.6592086893227054]}, "micro/recall": 0.6662812210915818, "micro/precision": 0.6318675293343569, "macro/f1": 0.604868641257225, "macro/f1_ci": {"90": [0.595296924609441, 0.614397231507266], "95": [0.5933778702735921, 0.6163061595932199]}, "macro/recall": 0.6244372176840122, "macro/precision": 0.589818811310092, "per_entity_metric": {"corporation": {"f1": 0.5359342915811088, "f1_ci": {"90": [0.5124250180674441, 0.562196264340956], "95": [0.5066242713301538, 0.5660601358658982]}, "precision": 0.49809160305343514, "recall": 0.58}, "creative_work": {"f1": 0.454661558109834, "f1_ci": {"90": [0.42294214039784905, 0.4866248288332962], "95": [0.4174022952917621, 0.49281072809973214]}, "precision": 0.42634730538922155, "recall": 0.48700410396716826}, "event": {"f1": 0.46186621218576907, "f1_ci": {"90": [0.4407249060721636, 0.48402759846047894], "95": [0.43625117639460426, 0.4896707137226466]}, "precision": 0.4342948717948718, "recall": 0.4931756141947225}, "group": {"f1": 0.6163606010016696, "f1_ci": {"90": [0.5951285544493952, 0.6383988899613899], "95": [0.5921567684006442, 0.6431355549407772]}, "precision": 0.6249153689911984, "recall": 0.6080368906455863}, "location": {"f1": 0.6615873015873016, "f1_ci": {"90": [0.6349800972344961, 0.6883097309494146], "95": [0.6280602263375301, 0.6938339172840142]}, "precision": 0.6065192083818394, "recall": 0.7276536312849162}, "person": {"f1": 0.8278614184654453, "f1_ci": {"90": [0.8174552782574815, 0.8383023554114327], "95": [0.8153046175852993, 0.840402111046631]}, "precision": 0.814709032488397, "recall": 0.8414454277286135}, "product": {"f1": 0.675809105869446, "f1_ci": {"90": [0.6533841788755885, 0.6975096627158484], "95": [0.648618174354878, 0.7003805018510901]}, "precision": 0.7238542890716804, "recall": 0.6337448559670782}}}
eval/metric_span.test_2020.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.7720332172515403, "micro/f1_ci": {}, "micro/recall": 0.7477944992215879, "micro/precision": 0.7978959025470653, "macro/f1": 0.7720332172515403, "macro/f1_ci": {}, "macro/recall": 0.7477944992215879, "macro/precision": 0.7978959025470653}
eval/metric_span.test_2021.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.7843071034560397, "micro/f1_ci": {}, "micro/recall": 0.8057129640337689, "micro/precision": 0.7640092115363527, "macro/f1": 0.7843071034560397, "macro/f1_ci": {}, "macro/recall": 0.8057129640337689, "macro/precision": 0.7640092115363527}
eval/prediction.2020.test.json DELETED
The diff for this file is too large to render. See raw diff
 
eval/prediction.2021.test.json DELETED
The diff for this file is too large to render. See raw diff
 
eval/prediction.random.dev.json DELETED
The diff for this file is too large to render. See raw diff
 
trainer_config.json CHANGED
@@ -1 +1 @@
1
- {"data_split": "random.train", "model": "vinai/bertweet-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
 
1
+ {"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "vinai/bertweet-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}