--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: xlm-roberta-base-sst2-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/SST2 type: tmnam20/VieGLUE config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8830275229357798 --- # xlm-roberta-base-sst2-10 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3909 - Accuracy: 0.8830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3971 | 0.24 | 500 | 0.3420 | 0.8544 | | 0.3266 | 0.48 | 1000 | 0.3271 | 0.8555 | | 0.2831 | 0.71 | 1500 | 0.3069 | 0.8761 | | 0.2752 | 0.95 | 2000 | 0.3220 | 0.8807 | | 0.2286 | 1.19 | 2500 | 0.3367 | 0.8911 | | 0.2294 | 1.43 | 3000 | 0.3194 | 0.8761 | | 0.2055 | 1.66 | 3500 | 0.3312 | 0.8853 | | 0.1902 | 1.9 | 4000 | 0.3307 | 0.8842 | | 0.1645 | 2.14 | 4500 | 0.3608 | 0.8956 | | 0.153 | 2.38 | 5000 | 0.3796 | 0.8888 | | 0.1868 | 2.61 | 5500 | 0.3763 | 0.8842 | | 0.1477 | 2.85 | 6000 | 0.3959 | 0.8830 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0