--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-qnli-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QNLI type: tmnam20/VieGLUE config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.891085484166209 --- # bert-base-multilingual-cased-qnli-10 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co./bert-base-multilingual-cased) on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3198 - Accuracy: 0.8911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4249 | 0.15 | 500 | 0.3656 | 0.8464 | | 0.3989 | 0.31 | 1000 | 0.3319 | 0.8581 | | 0.3557 | 0.46 | 1500 | 0.3096 | 0.8688 | | 0.3257 | 0.61 | 2000 | 0.3055 | 0.8700 | | 0.3403 | 0.76 | 2500 | 0.2893 | 0.8786 | | 0.311 | 0.92 | 3000 | 0.2919 | 0.8841 | | 0.2424 | 1.07 | 3500 | 0.2974 | 0.8838 | | 0.2663 | 1.22 | 4000 | 0.2966 | 0.8845 | | 0.2486 | 1.37 | 4500 | 0.2904 | 0.8828 | | 0.2442 | 1.53 | 5000 | 0.2919 | 0.8810 | | 0.252 | 1.68 | 5500 | 0.2781 | 0.8880 | | 0.2514 | 1.83 | 6000 | 0.2754 | 0.8867 | | 0.254 | 1.99 | 6500 | 0.2692 | 0.8882 | | 0.1632 | 2.14 | 7000 | 0.3349 | 0.8867 | | 0.1835 | 2.29 | 7500 | 0.3126 | 0.8902 | | 0.1725 | 2.44 | 8000 | 0.3145 | 0.8902 | | 0.1624 | 2.6 | 8500 | 0.3272 | 0.8876 | | 0.1751 | 2.75 | 9000 | 0.3240 | 0.8882 | | 0.1653 | 2.9 | 9500 | 0.3235 | 0.8900 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0