--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-finetuned-4 results: [] --- # whisper-large-v3-finetuned-4 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2707 - Wer: 84.5725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-08 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.8473 | 1.0 | 7532 | 0.3636 | 69.4836 | | 0.0229 | 2.0 | 15064 | 0.3078 | 54.1681 | | 3.1078 | 3.0 | 22596 | 0.2848 | 67.0070 | | 0.0011 | 4.0 | 30128 | 0.2737 | 75.4447 | | 0.0001 | 5.0 | 37660 | 0.2707 | 84.5725 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2