--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-finetuned-3 results: [] --- # whisper-large-v3-finetuned-3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4613 - Wer: 14.1303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.6619 | 1.0 | 7532 | 0.9729 | 17.3462 | | 0.3855 | 2.0 | 15064 | 0.6037 | 14.6585 | | 0.0328 | 3.0 | 22596 | 0.4903 | 14.4165 | | 0.2139 | 4.0 | 30128 | 0.4658 | 14.1668 | | 0.1882 | 5.0 | 37660 | 0.4613 | 14.1303 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2