--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-finetuned-2 results: [] --- # whisper-large-v3-finetuned-2 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8292 - Wer: 29.2595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-09 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.0224 | 1.0 | 7532 | 1.8944 | 30.6810 | | 2.932 | 2.0 | 15064 | 1.8575 | 30.1652 | | 1.6702 | 3.0 | 22596 | 1.8380 | 29.3775 | | 1.9191 | 4.0 | 30128 | 1.8304 | 29.2800 | | 2.155 | 5.0 | 37660 | 1.8292 | 29.2595 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2