--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy - f1 - precision - recall widget: - text: it's not enough that product is integrating brand in product search results but is also looking to add it to product, word and outlook. this could be transformative for productivity at work in the future if it works! product could be under siege soon! - text: 'Copilot in Windows 11 is a game changer!! Here is a list of things it can do: It can answer your questions in natural language. It can summarize content to give you a brief overview It can adjust your PCs settings It can help troubleshoot issues. 1/2' - text: 1/2 Hello Clif! He didn't want to use ChatGPT, its data or openai. Hes using the French LLM Mistral and currently training it on his own data articles/books he personally published, and hes been requesting book publishers permission to use their books - text: 'Protecting data in the era of generative AI: Nightfall AI launches innovative security platform dlvr.it/StD9vP' - text: All I want from my Mac is GODDAM DROPDOWN MENUS Please stop with the icons. Im talking to you, Apple, and PARTICULARLY to you, Microsoft Word. Death to thy ribbon, and be damned pipeline_tag: text-classification inference: true base_model: BAAI/bge-base-en-v1.5 model-index: - name: SetFit with BAAI/bge-base-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7915057915057915 name: Accuracy - type: f1 value: - 0.3720930232558139 - 0.4615384615384615 - 0.8747044917257684 name: F1 - type: precision value: - 0.23529411764705882 - 0.3076923076923077 - 0.9946236559139785 name: Precision - type: recall value: - 0.8888888888888888 - 0.9230769230769231 - 0.7805907172995781 name: Recall --- # SetFit with BAAI/bge-base-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neither | | | peak | | | pit | | ## Evaluation ### Metrics | Label | Accuracy | F1 | Precision | Recall | |:--------|:---------|:-------------------------------------------------------------|:--------------------------------------------------------------|:-------------------------------------------------------------| | **all** | 0.7915 | [0.3720930232558139, 0.4615384615384615, 0.8747044917257684] | [0.23529411764705882, 0.3076923076923077, 0.9946236559139785] | [0.8888888888888888, 0.9230769230769231, 0.7805907172995781] | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("tjmooney98/725_tm-setfit-bge-base-en-v1.5") # Run inference preds = model("Protecting data in the era of generative AI: Nightfall AI launches innovative security platform dlvr.it/StD9vP") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 9 | 37.1711 | 98 | | Label | Training Sample Count | |:--------|:----------------------| | pit | 150 | | peak | 150 | | neither | 150 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0002 | 1 | 0.2384 | - | | 0.0119 | 50 | 0.2399 | - | | 0.0237 | 100 | 0.2136 | - | | 0.0356 | 150 | 0.1323 | - | | 0.0474 | 200 | 0.0703 | - | | 0.0593 | 250 | 0.01 | - | | 0.0711 | 300 | 0.0063 | - | | 0.0830 | 350 | 0.0028 | - | | 0.0948 | 400 | 0.0026 | - | | 0.1067 | 450 | 0.0021 | - | | 0.1185 | 500 | 0.0018 | - | | 0.1304 | 550 | 0.0016 | - | | 0.1422 | 600 | 0.0014 | - | | 0.1541 | 650 | 0.0015 | - | | 0.1659 | 700 | 0.0013 | - | | 0.1778 | 750 | 0.0012 | - | | 0.1896 | 800 | 0.0012 | - | | 0.2015 | 850 | 0.0012 | - | | 0.2133 | 900 | 0.0011 | - | | 0.2252 | 950 | 0.0011 | - | | 0.2370 | 1000 | 0.0009 | - | | 0.2489 | 1050 | 0.001 | - | | 0.2607 | 1100 | 0.0009 | - | | 0.2726 | 1150 | 0.0008 | - | | 0.2844 | 1200 | 0.0008 | - | | 0.2963 | 1250 | 0.0009 | - | | 0.3081 | 1300 | 0.0008 | - | | 0.3200 | 1350 | 0.0007 | - | | 0.3318 | 1400 | 0.0007 | - | | 0.3437 | 1450 | 0.0007 | - | | 0.3555 | 1500 | 0.0006 | - | | 0.3674 | 1550 | 0.0007 | - | | 0.3792 | 1600 | 0.0007 | - | | 0.3911 | 1650 | 0.0008 | - | | 0.4029 | 1700 | 0.0006 | - | | 0.4148 | 1750 | 0.0006 | - | | 0.4266 | 1800 | 0.0006 | - | | 0.4385 | 1850 | 0.0006 | - | | 0.4503 | 1900 | 0.0006 | - | | 0.4622 | 1950 | 0.0006 | - | | 0.4740 | 2000 | 0.0006 | - | | 0.4859 | 2050 | 0.0005 | - | | 0.4977 | 2100 | 0.0006 | - | | 0.5096 | 2150 | 0.0006 | - | | 0.5215 | 2200 | 0.0005 | - | | 0.5333 | 2250 | 0.0005 | - | | 0.5452 | 2300 | 0.0005 | - | | 0.5570 | 2350 | 0.0006 | - | | 0.5689 | 2400 | 0.0005 | - | | 0.5807 | 2450 | 0.0005 | - | | 0.5926 | 2500 | 0.0006 | - | | 0.6044 | 2550 | 0.0006 | - | | 0.6163 | 2600 | 0.0005 | - | | 0.6281 | 2650 | 0.0005 | - | | 0.6400 | 2700 | 0.0005 | - | | 0.6518 | 2750 | 0.0005 | - | | 0.6637 | 2800 | 0.0005 | - | | 0.6755 | 2850 | 0.0005 | - | | 0.6874 | 2900 | 0.0005 | - | | 0.6992 | 2950 | 0.0004 | - | | 0.7111 | 3000 | 0.0004 | - | | 0.7229 | 3050 | 0.0004 | - | | 0.7348 | 3100 | 0.0005 | - | | 0.7466 | 3150 | 0.0005 | - | | 0.7585 | 3200 | 0.0005 | - | | 0.7703 | 3250 | 0.0004 | - | | 0.7822 | 3300 | 0.0004 | - | | 0.7940 | 3350 | 0.0004 | - | | 0.8059 | 3400 | 0.0004 | - | | 0.8177 | 3450 | 0.0004 | - | | 0.8296 | 3500 | 0.0004 | - | | 0.8414 | 3550 | 0.0004 | - | | 0.8533 | 3600 | 0.0004 | - | | 0.8651 | 3650 | 0.0004 | - | | 0.8770 | 3700 | 0.0004 | - | | 0.8888 | 3750 | 0.0004 | - | | 0.9007 | 3800 | 0.0004 | - | | 0.9125 | 3850 | 0.0004 | - | | 0.9244 | 3900 | 0.0005 | - | | 0.9362 | 3950 | 0.0004 | - | | 0.9481 | 4000 | 0.0004 | - | | 0.9599 | 4050 | 0.0004 | - | | 0.9718 | 4100 | 0.0004 | - | | 0.9836 | 4150 | 0.0004 | - | | 0.9955 | 4200 | 0.0004 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.5.1 - Transformers: 4.38.1 - PyTorch: 2.1.0+cu121 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```