--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy - f1 - precision - recall widget: - text: ' I''ll pay $1,000 if anyone can find a published study that ChatGPT confirms merely attempts to refute the OPV AIDS theory without desperately resorting to a pathetic strawman. ' - text: my disappointment is immeasurable and my day is ruined. any idea if they will ever fix it or is it just permanent? i feel like just wow man just freaking wow - text: The stuff chatgpt gives is entirely too scripted *and* impractical, which is what I'm trying to avoid :/ - text: 'my experience with product product and brand: it''s amazing and not a bit scary. despite the articles about product''s personality, my experience shows the opposite: it''s useful, friendly, and truly amazing technology.' - text: product is a massive energy hog. have a bunch of tabs open and your computer will come to a crawl. also, ad blocking is terrible on product company ads) because product apparently has a "whitelist" of ads that it refuses to be blocked. company is way better pipeline_tag: text-classification inference: true base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.5192307692307693 name: Accuracy - type: f1 value: - 0.2641509433962264 - 0.1553398058252427 - 0.6593406593406593 name: F1 - type: precision value: - 0.1590909090909091 - 0.09090909090909091 - 0.9375 name: Precision - type: recall value: - 0.7777777777777778 - 0.5333333333333333 - 0.5084745762711864 name: Recall --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co./BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co./BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:--------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | peak | | | pit | | | neither | | ## Evaluation ### Metrics | Label | Accuracy | F1 | Precision | Recall | |:--------|:---------|:-------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------------------------| | **all** | 0.5192 | [0.2641509433962264, 0.1553398058252427, 0.6593406593406593] | [0.1590909090909091, 0.09090909090909091, 0.9375] | [0.7777777777777778, 0.5333333333333333, 0.5084745762711864] | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("tjmooney98/725_test_model") # Run inference preds = model("The stuff chatgpt gives is entirely too scripted *and* impractical, which is what I'm trying to avoid :/") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 18 | 38.0667 | 91 | | Label | Training Sample Count | |:--------|:----------------------| | pit | 5 | | peak | 5 | | neither | 5 | ### Training Hyperparameters - batch_size: (5, 5) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0333 | 1 | 0.1809 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.5.1 - Transformers: 4.38.1 - PyTorch: 2.1.0+cu121 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```