--- base_model: csebuetnlp/mT5_multilingual_XLSum tags: - generated_from_trainer model-index: - name: HappyNews_1_loadbest results: [] --- # HappyNews_1_loadbest This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co./csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.1092 | 0.29 | 100 | 4.0260 | | 4.3545 | 0.58 | 200 | 3.6022 | | 3.818 | 0.87 | 300 | 3.3815 | | 3.2577 | 1.16 | 400 | 3.2590 | | 3.1005 | 1.45 | 500 | 3.1290 | | 3.0309 | 1.73 | 600 | 3.0690 | | 3.0128 | 2.02 | 700 | 3.0172 | | 2.4054 | 2.31 | 800 | 3.0086 | | 2.7848 | 2.6 | 900 | 3.0103 | | 2.4307 | 2.89 | 1000 | 2.9606 | | 2.3408 | 3.18 | 1100 | 2.9490 | | 2.4232 | 3.47 | 1200 | 2.9333 | | 2.5301 | 3.76 | 1300 | 2.9138 | | 1.9984 | 4.05 | 1400 | 2.9422 | | 2.1215 | 4.34 | 1500 | 2.9620 | | 1.859 | 4.62 | 1600 | 2.9550 | | 1.8986 | 4.91 | 1700 | 2.9654 | | 1.847 | 5.2 | 1800 | 3.0660 | | 1.7843 | 5.49 | 1900 | 3.0169 | | 1.9724 | 5.78 | 2000 | 3.0131 | | 1.6603 | 6.07 | 2100 | 3.0816 | | 1.4024 | 6.36 | 2200 | 3.0947 | | 1.2758 | 6.65 | 2300 | 3.0688 | | 1.7435 | 6.94 | 2400 | 3.0203 | | 1.2973 | 7.23 | 2500 | 3.1221 | | 1.282 | 7.51 | 2600 | 3.1566 | | 1.4837 | 7.8 | 2700 | 3.1047 | | 1.6313 | 8.09 | 2800 | 3.1343 | | 1.4611 | 8.38 | 2900 | 3.1634 | | 1.0115 | 8.67 | 3000 | 3.1751 | | 1.4337 | 8.96 | 3100 | 3.1701 | | 1.1845 | 9.25 | 3200 | 3.1881 | | 1.2019 | 9.54 | 3300 | 3.1998 | | 1.1448 | 9.83 | 3400 | 3.1967 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1