update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: gopdataset_phonome_base_add_transformer
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# gopdataset_phonome_base_add_transformer
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.3081
|
18 |
+
- Cer: 0.1141
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 32
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 1000
|
44 |
+
- num_epochs: 30
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| 6.7266 | 0.84 | 100 | 3.4268 | 0.9750 |
|
52 |
+
| 3.258 | 1.68 | 200 | 3.2266 | 0.7902 |
|
53 |
+
| 2.5421 | 2.52 | 300 | 1.1589 | 0.5124 |
|
54 |
+
| 1.0681 | 3.36 | 400 | 0.4367 | 0.1676 |
|
55 |
+
| 0.7192 | 4.2 | 500 | 0.4418 | 0.1658 |
|
56 |
+
| 0.5793 | 5.04 | 600 | 0.3079 | 0.1331 |
|
57 |
+
| 0.5329 | 5.88 | 700 | 0.3078 | 0.1287 |
|
58 |
+
| 0.4988 | 6.72 | 800 | 0.3051 | 0.1251 |
|
59 |
+
| 0.4455 | 7.56 | 900 | 0.2843 | 0.1206 |
|
60 |
+
| 0.4271 | 8.4 | 1000 | 0.2865 | 0.1234 |
|
61 |
+
| 0.4027 | 9.24 | 1100 | 0.2996 | 0.1214 |
|
62 |
+
| 0.3939 | 10.08 | 1200 | 0.2874 | 0.1199 |
|
63 |
+
| 0.3633 | 10.92 | 1300 | 0.2777 | 0.1237 |
|
64 |
+
| 0.3482 | 11.76 | 1400 | 0.2648 | 0.1171 |
|
65 |
+
| 0.3267 | 12.61 | 1500 | 0.2737 | 0.1174 |
|
66 |
+
| 0.3334 | 13.45 | 1600 | 0.2812 | 0.1176 |
|
67 |
+
| 0.3145 | 14.29 | 1700 | 0.2709 | 0.1163 |
|
68 |
+
| 0.2921 | 15.13 | 1800 | 0.2689 | 0.1153 |
|
69 |
+
| 0.2939 | 15.97 | 1900 | 0.2757 | 0.1153 |
|
70 |
+
| 0.2681 | 16.81 | 2000 | 0.2785 | 0.1161 |
|
71 |
+
| 0.2691 | 17.65 | 2100 | 0.2955 | 0.1196 |
|
72 |
+
| 0.2627 | 18.49 | 2200 | 0.2922 | 0.1174 |
|
73 |
+
| 0.2519 | 19.33 | 2300 | 0.2820 | 0.1148 |
|
74 |
+
| 0.2391 | 20.17 | 2400 | 0.3038 | 0.1190 |
|
75 |
+
| 0.2393 | 21.01 | 2500 | 0.2873 | 0.1162 |
|
76 |
+
| 0.2324 | 21.85 | 2600 | 0.2903 | 0.1148 |
|
77 |
+
| 0.2217 | 22.69 | 2700 | 0.3018 | 0.1167 |
|
78 |
+
| 0.2156 | 23.53 | 2800 | 0.3033 | 0.1153 |
|
79 |
+
| 0.2039 | 24.37 | 2900 | 0.2975 | 0.1147 |
|
80 |
+
| 0.2018 | 25.21 | 3000 | 0.3055 | 0.1159 |
|
81 |
+
| 0.1996 | 26.05 | 3100 | 0.3035 | 0.1151 |
|
82 |
+
| 0.2013 | 26.89 | 3200 | 0.3032 | 0.1153 |
|
83 |
+
| 0.2002 | 27.73 | 3300 | 0.3029 | 0.1146 |
|
84 |
+
| 0.196 | 28.57 | 3400 | 0.3118 | 0.1157 |
|
85 |
+
| 0.2047 | 29.41 | 3500 | 0.3081 | 0.1141 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.17.0
|
91 |
+
- Pytorch 2.4.0
|
92 |
+
- Datasets 1.18.3
|
93 |
+
- Tokenizers 0.20.3
|