--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for xception41.tf_in1k An Aligned Xception image classification model. Trained on ImageNet-1k in Tensorflow and ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 27.0 - GMACs: 9.3 - Activations (M): 39.9 - Image size: 299 x 299 - **Papers:** - Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation: https://arxiv.org/abs/1802.02611 - Xception: Deep Learning with Depthwise Separable Convolutions: https://arxiv.org/abs/1610.02357 - **Dataset:** ImageNet-1k - **Original:** https://github.com/tensorflow/models/blob/master/research/deeplab/ ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('xception41.tf_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'xception41.tf_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 128, 150, 150]) # torch.Size([1, 256, 75, 75]) # torch.Size([1, 728, 38, 38]) # torch.Size([1, 1024, 19, 19]) # torch.Size([1, 2048, 10, 10]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'xception41.tf_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 10, 10) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @inproceedings{deeplabv3plus2018, title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation}, author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam}, booktitle={ECCV}, year={2018} } ``` ```bibtex @misc{chollet2017xception, title={Xception: Deep Learning with Depthwise Separable Convolutions}, author={François Chollet}, year={2017}, eprint={1610.02357}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```